Basics of Mechanical Ventilation

Ehab G Daoud MD, FACP, FCCP

Associate Professor of Medicine, JABSOM, University of Hawaii Medical director of respiratory program, Kapiolani Community College Critical Care Medicine

Normal Breathing (Negative Pressure)

The Ventilator

- Best Invention in history ???? saves lives
- Created the modern ICU

Rules:

- Love your ventilator; listen to what it tells you, its your friend
- Use its lingo
- Beware of your ventilator

• Adjust the ventilator to the patient not patient to ventilator

Ventilator Lingo

• How are you doing (correct) (Flow Triggered, Flow Targeted, Volume Cycled Assist control mode)

(Flow Triggered, Pressure targeted, Time Cycled Assist Control mode)

• Whad up yo, Howzit (slang) (Volume control) (AC) (Pressure control) (PC)

Ventilator Evolution

Ventilator Evolution

• 1970: 3 modes of ventilation

• 2014: > 200 modes of ventilation

> 50 ventilator tradenames

Goals of Mechanical Ventilation

- Safety:
- Oxygenation & Ventilation
- - Avoid Ventilator Induced Lung Injury (volutrauma, barotrauma, atelectrauma, biotrauma, ergotrauma)
- Comfort: Patient ventilator Synchrony, auto-PEEP

Liberation: Minimize duration of mechanical ventilation
Society of Mechanical Ventilation

Indications for Mechanical Ventilation

Alveolar filling processes	Hypoventilation: decreased central drive				
Pneumonitis - infectious, aspiration	General anesthesia				
Noncardiogenic pulmonary edema/ARDS (eg, due to infection, inhalation injury, near drowning, transfusion, contusion, high altitude)	Drug overdose Hypoventilation: peripheral nervous system/ respiratory muscle dysfunction				
Cardiogenic pulmonary edema					
Pulmonary hemorrhage	Amyotrophic lateral sclerosis				
Tumor (eg, choriocarcinoma)	Cervical quadriplegia				
Alveolar proteinosis	Guillain-Barré syndrome				
Intravascular volume overload of any cause	Myasthenia gravis				
Pulmonary vascular disease	Tetanus, tick bite, ciguatera poisoning				
Pulmonary thromboembolism	Toxins (eg, strychnine)				
Amniotic fluid embolism, tumor emboli	Hypoventilation: chest wall and pleural disease				
Diseases causing airways obstruction: central	Kyphoscoliosis				
Tumor	Trauma (eg, flail chest)				
Laryngeal angioedema	Massive pleural effusion				
Tracheal stenosis	Pneumothorax				
	Increased ventilatory demand				
Diseases causing airways obstruction: distal	Severe sepsis				
Acute exacerbation of chronic obstructive pulmonary disease	Septic shock				
Acute, severe asthma	Severe metabolic acidosis UpToDate				

Respiratory Mechanics

Respiratory Mechanics

Positive Pressure Breath

Trigger: How does Inspiration start

Limit: Maximum value during Inspiration

Cycle: How does inhalation stops and exhalation starts

Modes of Mechanical Ventilation

- WHAT IS A MODE? A mode of mechanical ventilation has three essential components:
- The control variable
- The breath sequence
- The targeting scheme.

Mechanical breath description

Control variable-the mechanical breath goal, ie, a set pressure or a set volume

Trigger variable—that which starts inspiration, ie, the patient (generating changes in pressure or flow) or a set rate (time between breaths)

Limit variable—the maximum value during inspiration

Cycle variable-that which ends inspiration

Breath sequence

Continuous mandatory ventilation—all breaths are controlled by the ventilator, so usually they have the same characteristics regardless of the trigger (patient or set rate); no spontaneous breaths are allowed

Intermittent mandatory ventilation—a set number of mechanical breaths is delivered regardless of the trigger (patient initiation or set rate); spontaneous breaths are allowed between or during mandatory breaths

Continuous spontaneous ventilation-all breaths are spontaneous with or without assistance

Type of control or targeting scheme*

Set point—the ventilator delivers and maintains a set goal, and this goal is constant (eg, in pressure control, the set point is pressure, which will remain constant throughout the breath); to a degree, all modes have some set-point control scheme

Servo—the ventilator adjusts its output to a given patient variable (ie, in proportional assist ventilation, the inspiratory flow follows and amplifies the patient's own flow pattern)

Adaptive—the ventilator adjusts a set point to maintain a different operator-selected set point (ie, in pressure-regulated volume control, the inspiratory pressure is adjusted breath to breath to achieve a target tidal volume)

Optimal—the ventilator uses a mathematical model to calculate the set points to achieve a goal (ie, in adaptive support ventilation, the pressure, respiratory rate, and tidal volume are adjusted to achieve a goal minute ventilation)

Modes of Mechanical Ventilation

Classification of modes of ventilation

CONTROL VARIABLE	BREATH SEQUENCE	TARGETING SCHEME	EXAMPLES OF COMMERCIALLY AVAILABLE MODES
Volume	Continuous mandatory	Set point	Volume control, VC-A/C, CMV, (S)CMV, Assist/Control
	ventilation	Dual	CMV + pressure limited
		Adaptive	Adaptive flow
	Intermittent	Set point	SIMV, VC-SIMV
	mandatory ventilation	Dual	SIMV + pressure limited
	ventilation	Adaptive	AutoMode (VC-VS), mandatory minute volume
Pressure	Continuous mandatory	Set point	Pressure control, PC-A/C, AC PCV, high-pressure oscillatory ventilation *
	ventilation	Adaptive	Pressure-regulated volume control, * VC+AC*, AMV+AutoFlow*
	Intermittent mandatory	Set point	Airway pressure-release ventilation, * SIMV PCV, BiLevel, * PCV+ *
	ventilation	Adaptive	VC+SIMV, V V+SIMV APVSIMV, SIMV+AutoFlow, Automode (PRVC-VS)
		Optimal	Adaptive support ventilation *
	Continuous spontaneous ventilation	Set point	Continuous positive airway pressure, pressure support
		Dual	Volume assured pressure support, volume augment
		Servo	Proportional assist ventilation, a automatic tube compensation
		Adaptive	Volume support
		Intelligent	SmartCare

Modes of Mechanical Ventilation

Same tidal volume Volume/Flow Control Pressure Control Same inspiratory every breath pressure every breath Inspiration Expiration Inspiration Expiration Same inspiratory - Varying inspiratory flow every breath flow Paw -Varying -Varying tidal volume Pressure Paw inspiratory every breath pressure (compliance, (compliance, resistance, WOB) Plung resistance, Pt's Volume Little more difficult WOB) **Can result in higher** Easy tidal volumes Worsens **Superior synchrony Dysynchrony** Superior oxygenation May worsen Pt's (Higher mean airway Flow Time (s) work of breathing pressure) Inferior _ **May reduce VILI** oxygenation (less 9 mean airway

pressure)

Patient-Ventilator Interaction

PEEP (Positive End Expiratory Pressure)

Probably most important Parameter to apply and adjust

Many ways to do it (no agreement in literature) Improves oxygenation

Too low can cause VILI

Too high can cause overdistention & hemodynamic instability Society of Mechanical Ventilation

PEEP (Positive End Expiratory Pressure)

Pressure-Volume Loop Inflection Points

- *HIP*: Point where the lung reaches TLC, above that: Over distention
- LIP: Point where alveoli are recruited, below that: alveolar collapse during exhalation

PEEP (Positive End Expiratory Pressure)

Esophageal balloon and Trans-Pulmonary pressure measurement

PEEP-FiO2 table

Lower PEEP/higher FiO2

FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12

FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	14	14	14	16	18	18-24

Higher PEEP/lower FiO2

FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0
PEEP	18	20	22	22	22	24

Weaning & Liberation

Weaning & Liberation

Weaning

Liberation

The process of abruptly or gradually withdrawing ventilatory support The removal of the artificial airway

Weaning & Liberation Facts

- Mechanical ventilation can be abruptly withdrawn in 75% of patients whose respiratory failure has been improved or resolved can
- 25% of patients will need progressive withdrawal of mechanical ventilation
- · 40% of time spent on the ventilator is for weaning
- 56% of patients with unplanned extubation did not require reintubation
- · Weaning parameters are not good predictors of extubation
- Weaning with high PSV >7 cmH2O is not weaning
- 10% 15% extubation failure is acceptable

Weaning & Liberation

Weaning When?

PaO₂ \ge 60 mm Hg on FiO₂ \le 40–50% and PEEP \le 5–8 cm H₂O

PaCO, normal or baseline (except for permissive hypercapnia).

Weaning How?

Spontaneous Breathing Trial (SBT)

 Check respiratory system compliance and resistance before SBT

30 -120 minutes

- T-piece
- PSV 5-7 CmH2O
- CPAP 5-7 CmH2O
- ATC
- · Smart Care ?
- PAV ?

Blood pressure normal without vasopressors or with minimum vasopressor support (e.g., dopamine < 5 µg/kg/min).

No evidence of myocardial ischemia.

Heart rate ≤ 140 beats/minute.

Patient is able to initiate an inspiratory effort.

Adequate Mental Status:

Cardiovascular Criteria:

Respiratory Criteria:

- ✓ Patient is arousable, or Glasgow Coma Score ≥ 13.
- Absence of Correctible Comorbid Conditions:
 - Patient is afebrile.
 - There are no significant electrolyte abnormalities.

Weaning & Liberation

Hyperinflation (auto-PEEP

Interstitial inflammation and/or

Alveolar edema

Infection

edema

Atelectasis

Weaning causes of failed SBT

Factors that can lead to weaning failure due to the imbalance between ventilatory needs and respiratory capacity

Factors that increase the load					
Increased resistive loads	Increased chest wall elastic loads	Increased lung elastic loads			

Bronchospasm Airway edema, secretions Upper airway obstruction Obstructive sleep apnea Endotracheal tube kinking

Secretions encrustation

Ventilatory circuit resistance

~~ ~ ~ ~ ~

Pleural effusion ons Pneumothorax on Flail chest a Obesity ing Ascites

Abdominal distension

Factors that result in decreased neuromuscular competence

Decreased drive	Muscle weakness	Impaired neuromuscular transmission
Drug overdose	Electrolyte derangement	Critical illness polyneuropathy
Brain-stem lesion	Malnutrition	Neuromuscular blockers
Sleep deprivation	Myopathy	Aminoglycosides
Hypothyroidism	Hyperinflation	Guillain-Barré syndrome
Starvation/malnutrition	Drugs, corticosteroids	Mysthenia gravis
Metabolic alkalosis	Sepsis	Phrenic nerve injury
Myotonic dystrophy		Spinal cord lesion

Weaning Patients who fail SBT

- · Correct underlying reason for failure
- Daily SBT
- At least 24 hours of rest in between trials

Thank You Society of Mechanical Ventilation