PRONE POSITION & ESOPHAGEAL BALLOON

Ehab Daoud MD, FACP, FCCP

Associate Professor of Medicine, JABSOM, University of Hawaii Medical director of respiratory program, Kapiolani Community College

HSRC 2019

Objectives

Prone Position

Why/Benefits Why not/Contraindications How/Logistics

Esophageal Balloon Manometry

Why/Benefits Why not/Contraindications How/Logistics

Our Lungs

Ventilation

Intrapleural pressure more negative Greater transmural pressure difference Alveoli larger, less compliant Less ventilation

Perfusion Lower intravascular pressures Less recruitment, distention Higher resistance Less blood flow

Greater vascular pressures More recruitment, distention Lower resistance Greater blood flow

Intrapleural pressure less negative Smaller transmural pressure difference Alveoli smaller, more compliant More ventilation

Source: Michael G. Levitzky: Pulmonary Physiology, 9e Copyright © McGraw-Hill Education. All rights reserved.

INICCHALICAL VCHUIAUVII

How do we Breath

Prone position

History

- 1974 Bryan et al suggested that anaesthetized and paralyzed patients in the prone position exhibit a better expansion of the dependent (dorsal) lung regions with consistent improvement in oxygenation, indicating prone's potential beneficial impact on lung mechanics.
- 1976 Piehl et al reported dramatic effects on oxygenation improvement by prone position in five patients with ARDS
- 1977 Douglas et al. reported similar findings in six ARDS patients, confirming that prone positioning could effectively improve oxygenation in this patient group.

Early Prone studies Short time 7-8 hrs/day

Sud et al. ICM 2010: 36:585-599

Study or sub-cellegery	Proceet	Supra nN	Risk Ratio 95% CI	Weight	Plok Rato 95% CI
All Patients Gatimore 2001 Beisel 2002 Guartin 2004 Cartiny 2005 Vinggermather 2005 Chan 2006 Chan 2006 Teamore 2008 Teamore 2008 Teamo	92/148 4/12 179/413 4/31 3/72 36/76 3/11 8/23 79/166 400/909	87/145 4/9 199/377 4/31 3/19 37/40 4/11 10/19 97/122 421/467	+++++++++++++++++++++++++++++++++++++++	27,47 8,81 36,18 6,53 18,47 18,47 1,33 1,97 28,94 188,00	1.06 (3,88, 1.28) 0.76 (0.38, 2.22) 1.03 (0.47, 1.23) 1.03 (0.47, 1.23) 1.00 (0.26, 3.76) 0.41 (0.46, 1.10) 0.82 (0.36, 1.14) 0.72 (0.36, 1.44) 0.72 (0.36, 1.44) 0.89 (0.77, 1.13) 0.89 (0.57, 1.13)
PaOy/FIO2 ≥ 100 Subgroup Gatterer 2001 Guerre 2004 Curley 2005 Marcobo 2006 Cene 2007 Ferranske 2008 Tacone 2009 Satobal (BSS-CI) Test fur Overall Effect: p=0.25 Haterogenalty: F=0%	57/95 136/323 32/3 36/33 37/3 37/3 37/3 37/3 260/399 260/399	52/103 169/202 52/20 55/21 0/6 7/14 43/26 230/359		28,45 44,31 9,63 7,54 2,25 1,46 17,31 168,00	1.19 (0.82, 1.33) 1.07 (0.88, 1.31) 1.60 (0.35, 7.77] 0.94 (0.38, 1.31) 7.06 (0.47, 1.03, 177] 5.16 (0.16, 1.53) 0.96 (0.79, 1.33) 1.07 (0.81, 1.22)
PaG_FIG_ < 100 Subgroup Galinieri 2001 Guern 2004 Curley 2005 Marcsto 2006 Chin 2007 Ferrandez 2001 Taccone 2008 Biothari (85% CI) Test for Overall Effect: p=0.01 Haterogeneity: P = 0%	35/53 52/96 1/21 22/43 2/5 5/7 35/75 157/385	35/44 49/15 37/23 21/25 6/7 2/4 45/76 363/269		28.31 31,94 0.33 13,75 1.31 1.38 23,86 100.00	

Abroug et al. Critical care 2011, 15:R6

Group by	Study name	Statistics for each study				Odds ratio and 95%	
Patient Type		Odds ratio	Lower limit	Upper limit	p-Value		
ALI/ARDS	Gattinoni_2001	1,111	0,709	1,742	0,646	-==-	
ALI/ARDS	Guerin_2004	1,045	0,775	1,410	0,772	#	
ALI/ARDS	Voggenreiter_2005	0,267	0,025	2,815	0,272		
All studies with ALI/ARDS		1,049	0,819	1,344	0,706		
ARDS	Mancebo_2006	0,548	0,276	1,087	0,085		
ARDS	Chan_2007	0,593	0,078	4,498	0.613		
ARDS	Fernandez_2008	0,554	0,157	1,952	0,358	+++-	
ARDS	Taccone_2009	0,810	0,530	1,238	0,330		
All studies with ARDS		0,708	0,503	0,997	0,048		
Overall		0,916	0,750	1,120	0,392		

0,1 0,2 10

Favours Prone Favours Supine

Newer Studies Early initiation, 20 hrs/day

A Multicenter Trial of Prolonged Prone Ventilation in Severe Acute Respiratory Distress Syndrome

Newer Studies

Newer Studies PROSEVA

EDITORIAL

Prone position in ARDS: a simple maneuver still underused

Intensive Care Med (2018) 44:241-243

CrossMark

CrossMark

ORIGINAL

A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study

Intensive Care Med (2018) 44:22-37

Prone position underutilized ≈ 13% More use in Europe compared to North America Main reason for not using PP: Hypoxemia not considered severe Complications rare and similar to supine position

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries

Table 4. Use of Adjunctive and Other Optimization Measures in Invasively Ventilated Patients With Acute Respiratory Distress Syndrome^a

	Patients of No. (%) [95% CI]				
	All (n = 2377)	Mild ^a (n = 498)	Moderate ^a (n = 1150)	Severe ^a (n = 729)	– P Value ^b
Neuromuscular blockade	516 (21.7) [20.1-23.4]	34 (6.8) [4.8-9.4]	208 (18.1) [15.9-20.4]	274 (37.8) [34.1-41.2]	<.001
Recruitment maneuvers	496 (20.9) [19.2-22.6]	58 (11.7) [9.0-14.8]	200 (17.4) [15.2-19.7]	238 (32.7) [29.3-36.2]	<.001
Prone positioning	187 (7.9) [6.8-9.0]	5 (1.0) [0.3-2.3]	63 (5.5) [4.2-7.0]	119 (16.3) [13.7-19.2]	<.001
ECMO	76 (3.2) [2.5-4.0]	1 (0.2) [0.05-1.2]	27 (2.4) [1.6-3.4]	48 (6.6) [4.9-8.6]	<.001
Inhaled vasodilators	182 (7.7) [6.6-8.8]	17 (3.4) [02.0-5.4]	70 (6.1) [4.8-7.6]	95 (13.0) [10.7-15.7]	<.001
HFOV	28 (1.2) [0.8-1.7]	3 (0.6) [0.1-1.7]	14 (1.2) [0.7-2.0]	11 (1.5) [0.8-2.7]	.347
None of the above	1431 (60.2) [58.2-62.2]	397 (79.7) [75.9-83.2]	750 (65.2) [62.4-68.0]	284 (39.0) [35.4-42.6]	<.001
Esophageal pressure catheter	19 (0.8) [0.04-1.4]	2 (0.4) [0.04-1.4]	8 (0.7) [0.3-1.3]	9 (1.2) [0.6-2.3]	.233
Tracheostomy	309 (13.0) [11.6-14.4]	48 (9.6) [7.1-12.6]	155 (13.5) [11.6-15.6]	106 (14.5) [12.1-17.3]	.034
High-dose corticosteroids ^c	425 (17.9) [16.4-19.5]	61 (12.3) [9.5-15.5]	194 (16.9) [14.7-19.2]	170 (23.3) [20.3-26.6]	<.001
Pulmonary artery catheter	107 (4.5) [3.7-5.4]	9 (1.8) [0.8-3.4]	53 (4.6) [3.4-6.0]	45 (6.2) [4.5-8.2]	.001

JAMA. 2016;315(8):788-800.

CONCLUSIONS AND RELEVANCE Among ICUs in 50 countries, the period prevalence of ARDS was 10.4% of ICU admissions. This syndrome appeared to be underrecognized and undertreated and associated with a high mortality rate. These findings indicate the potential for improvement in the management of patients with ARDS.

Prone Position Mechanisms

- Alteration of distribution of ventilation
- Redistribution of blood flow
- Improved matching of Ventilation & Perfusion (V/Q)
- Improved homogeneity of lung units
- Decreased alveolar Stress and Strain
- Recruitment maneuver
- Decrease VILI
- Relief of Left lower lung compression by the heart
- Relief dorsal lung compression by abdominal organs
- Enhanced secretion clearance
- Improved RV output and Pulmonary pressures

Ventilation and Perfusion

Ventilation/Perfusion (V/Q)

More homogeneous alveoli and more homogeneous Trans-Pulmonary pressures

Ventilation/Perfusion (V/Q)

Stress and Strain

Fig. 4. Distribution of stress and strain and matching of ventilation and perfusion in the supine and prone postures. Considering the lung as a triangular-shaped spring (left), the combined effects of gravity and the greater tissue mass suspended from a larger dorsal chest wall produce more equal distribution of stress and strain in the lung, resulting in more uniform end-expiratory lung volume and alveolar size. On the right, each dot represents a single piece of lung. In the supine posture, there is close matching of ventilation and perfusion in the ventral lung but markedly poor matching in the dorsal lung, resulting a wide distribution of ventilation in perfusion (middle and right). In the supine posture, ventilation and perfusion are more closely matched throughout, resulting in a tighter distribution of ventilation/perfusion ratios.

Effect of Abdominal pressure and abdominal contents on the lung

1

Heart weight and position

Complications

Table 5. Incidence of Complications During the 28 Days After Randomization

	1 C	Supine Positio	n		Prone Position		
	Patient-Days	No. of Occurrences	Incidence per 100 Days (95% CI)	r Patient-Days	No. of Occurrences	Incidence per 100 Days (95% Cl	
Unplanned extubation	5188	47	0.91 (0.65-1.16)	5756	44	0.76 (0.54-0.99)	
Selective intubation*	5188	0	0	5755	6	0.10 (0.02-0.19)	
ETT obstruction+	5188	12	0.23 (0.10-0.36)	5755	34	0.59 (0.39-0.79)	
Hemoptysis	5188	34	0.66 (0.44-0.88)	5755	45	0.78 (0.55-1.01)	
Spoz <85%	5188	207	3.99 (3.45-4.53)	5755	236	4.10 (3.58-4.62)	
Cardiac arrest	5188	88	1.70 (1.34-2.05)	5754	87	1.51 (1.19-1.83)	
Heart rate <30/min	5188	72	1.39 (1.07-1.71)	5755	81	1.41 (1.10-1.71)	
SAP < 60 mm Hg	5188	148	2.85 (2.39-3.31)	5754	135	2 35 (1 95-2 74)	
Pressure sorest	5188	157	3.03 (2.55-3.50)	5756	208	3.61 (3.12-4.10)	
Atelectasis	5188	28	0.54 (0.34-0.74)	5756	28	0.49 (0.31-0.67)	
Intracranial hypertension	5188	3	0.06 (0.00-0.12)	5756	9	0.16 (0.05-0.26)	
Pneumothorax	5188	28	0.54 (0.34-0.74)	5756	22	0.38 (0.22-0.54)	

Abbreviations: CI, confidence interval; ETT, endotracheal tube; SAP, systolic arterial pressure; 95% Spc;, transcutaneous oxygen saturation of arterial blood. *P=.01.

tP=.002.

‡P=.005 between supine and prone position groups.

Society of meetinen continues

Contraindications

PRONE POSITION

Relative contraindications for the prone position:

- Elevated ICP
- Intestinal ischemia
- Obesity
- Recent Abdominal Surgery

Absolute contraindications for the prone position:

- · spinal cord instability,
- unstable facial fractures
- anterior burns, open abdomen
- increased abdominal pressures
- unstable pelvic fractures.

Esophageal Balloon Manometry

History

- 1949, Buytendijk first showed that it was possible to use esophageal pressure as a surrogate for pleural pressure.
- In 1952, Dornhorst and Leathart showed that changes in pleural and esophageal pressures were similar and useful to understand respiratory mechanics.
- In 1955, Cherniack and colleagues confirmed that changes in pleural pressure were similar to changes in esophageal pressure, although the absolute values of pressures in the pleural space were often more

negative than in the esophagus

Esophageal Balloon Benefits

- Measuring Trans-Pulmonary pressure to set Inspiratory pressure and PEEP
- Assess WOB during spontaneous breathing
- Aid in diagnosing Patient-Ventilator dys-synchrony
- Aid in assessing recruitability during recruitment maneuver
- Measuring Chest wall and lung elastance separately
- Aid in weaning off mechanical ventilation
- Transmural vascular pressure (i.e. the difference between intravascular and extramural pressure reflected by Pes)

Despite all those benefits, this tool remains confined to research Used in less than 1% of ARDS patients

CONCISE CLINICAL REVIEW

The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure

Am J Respir Crit Care Med Vol 189, Iss 5, pp 520–531, Mar 1, 2014

- A physiologically based ventilator strategy should take the trans-pulmonary pressure into account
- Despite all those benefits, this tool remains confined to research
- Used in less than 1% of ARDS patients

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 13, 2008

VOL. 359 NO. 20

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury

Outcome	Esophageal-Pressure-Guided (N=30)	Conventional Treatment (N=31)	P Value
28-Day mortality — no. (%)	5 (17)	12 (39)	0.055
180-Day mortality — no. (%)	8 (27)	14 (45)	0.13
Length of ICU stay — days			0.16
Median	15.5	13.0	
Interquartile range	10.8-28.5	7.0-22.0	
No. of ICU-free days at 28 days			0.96
Median	5.0	4.0	
Interquartile range	0.0-14.0	0.0-16.0	
No. of ventilator-free days at 28 days			0.50
Median	11.5	7.0	
Interquartile range	0.0-20.3	0.0-17.0	
No. of days of ventilation among survivo	rs		0.71
Median	12.0	16.0	
Interquartile range	7.0-27.5	7.0-20.0	

CONCLUSIONS

As compared with the current standard of care, a ventilator strategy using esophageal pressures to estimate the transpulmonary pressure significantly improves oxygenation and compliance. Multicenter clinical trials are needed to determine whether this approach should be widely adopted. (ClinicalTrials.gov number, NCT00127491.)

Trans-Pulmonary Measurement

- Goal is to keep Inspiratory PL < 15-20 cmH2O, to avoid lung stress (over distension, i.e. volutrauma and barotrauma) i.e. Stress
- Goal to keep Expiratory PL > 0 (0-5) cmH2O to avoid lung strain (repeated opening and closing of alveoli, i.e. atelectatotrauma) i.e. Strain

Society of Mechanica N Engl J Med 2008;359:2095-104

Transpulmonary Measurement

Compliance Respiratory System, Chest Wall, Lung

It is NOT enough to look for the Plateau pressure (1 side of the coin)

Patient – Ventilator Asynchrony

Weaning from mechanical ventilation

 Esophageal Balloon is needed to calculate both: Work Of Breathing (WOB)
Pressure-Time Product (PTP)

 Multiple studies have shown the significance of monitoring the WOB & PTP during weaning trials. The higher the variables, the high likelihood of failing the trial

Am J Respir Crit Care Med 1997;155:906–915

Understanding the real Filling pressure of the Heart

Mean Pes is the more convenient technique to estimate extramural pressure and therefore the transmural filling pressures, that is, the intravascular minus the surrounding extravascular pressure

CVP-Pes PAWP-Pes LVEDP-Pes

New: Use in APRV

Society of Mechan Can J Respir Ther Vol 54 No 3 Fall 2018

Be Happy, Be Thankful and Appreciate what you have

Society of MAHALO cal Ventilation