CLINICAL CAPNOGRAPHY

END-TIDAL CARBON DIOXIDE MEASUREMENT (ETCO,)

Seciety of Mechanical Ventilation

Ron Sanderson DrPH, MEd, RRT, RPFT, AE-C

Clinical Capnography

End-Tidal Carbon Dioxide Measurement (EtCO₂)

Why is this a need to know topic?

Technology for assessing the ventilatory (CO₂ elimination) aspect of respiration has reached a point that it now surpasses pulse oximetry in monitoring respiratory rate and depth of breathing; therefore the combination of capnography and pulse oximetry are recommended standards of care

Clinical Capnography

(Measurement of EtCO₂)

Where will we be using this?

- Standard of care for procedural sedation
- ➤ New standard of care for patients with sedation IV pumps
- ➤ Useful to assess ventilation without an arterial puncture
- > Standard of care for CPR intubation and cardiac compression assessment

Nasal Oxygen Cannula with CO₂ sampling line

CO₂ Sample Line for Vents and NIVs

CLINICAL CAPNOGRAPHY

Normal values:

 $P_ECO_2 = 1 - 5 \text{ mmHg.} < P_aCO_2$

 $P_FCO_2 = 35 - 43 \text{ mmHg}.$

Since the exhaled CO₂
is coming out of the blood via
pressure gradient the P_ECO₂ will
always
be less than P_aCO₂ or P_vCO₂
at any given time.

Capnography

Normal Waveform

Physiologic factors affecting EtCO₂ levels:

Increase in EtCO₂

- Increased muscular activity (shivering)
- Malignant hyperthermia
- Increased cardiac output (during resuscitation)
- Bicarbonate infusion
- Tourniquet release
- Effective drug therapy for bronchospasm
- Decreased minute ventilation

Physiologic factors affecting EtCO₂ levels:

Decrease in EtCO₂

- Decreased muscular activity (muscle relaxants)
- Hypothermia
- Decreased cardiac output
- Pulmonary embolism
- Bronchospasm
- Increased minute ventilation

Steps to Success with EtCO₂

- ✓ Check for plateau on the waveform
- ✓ Whenever possible, corelate with a P_aCO_2

Waveform often seen; not accurate numbers!

P _E CO ₂ Interpretation –		
Condition #1	Waveform plateau present and P _E CO ₂ correlates with a P _a CO ₂	Good for assessment of changes in minute ventilation.
Condition #2	Waveform plateau present and P_ECO_2 much lower than P_aCO_2 .	Good for assessment of changes in V_D/V_T and trending changes in minute ventilation
Condition #3	Waveform does not plateau	Not accurate; marginal for trending minute ventilation; Useful for monitoring effectiveness of CPR

Society of Mechanical Ventuation

The capnograph of an intubated cardiac arrest patient is a direct correlation to cardiac output

Increase in CO₂ during CPR can be an early indicator of ROSC (Return of Spontaneous Circulation)

Termination of Resuscitation

EtCO2 measurements during a resuscitation give you an accurate indicator of survivability for patients under CPR

Non-survivors <10 mmHg
Survivors >30 mmHg
(to discharge)

ET Tube Verification

• Verification of proper tube placement

no waveform = no tube!!!

There is simply <u>NO BETTER WAY</u> to confirm proper tube placement than with waveform capnography.... PERIOD!!!