1) C

The alveolar gas equation is expressed as: $\mathbf{P A O}_{\mathbf{2}}=\mathbf{F I O}_{\mathbf{2}}\left(\mathbf{P}_{\mathbf{B}}-\mathbf{P}_{\mathbf{H 2 0}}\right)-\mathbf{P a C O}_{2} / \mathbf{R Q}$
FIO_{2} : Fraction inspired oxygen, PB : atmospheric barometric pressure at sea level $(760 \mathrm{mmHg}), \mathrm{PH}_{2} \mathrm{O}$: barometric pressure of water (47 mmHg), PaCO_{2} : partial pressure of arterial carbon dioxide, RQ :
respiratory quotient (0.8)
2) C

Using the above equation, The PAO_{2} with FiO 20.21 at sea level is 101 mmHg , assuming normal $\mathrm{A}-\mathrm{a}$ gradient of 10 , the expected PaO 2 is about 90

Estimated A-a gradient $=2.5 \mathrm{X}(0.25 \mathrm{X} \mathrm{Age})$
3) D

Using the above equation, the $\mathrm{PAO} 2=650 \mathrm{mmHg}$, the PaO_{2} is 450 mmHg , so difference is very wide of 200 mmHg indicating abnormal physiology.
4) D

As the PaCO 2 decrease, the PAO_{2} will increase and vice versa $50 / 0.8-30 / 0.8=25 \mathrm{mmHg}$
5) D

According to the PCO_{2} equation, $\mathbf{P a C O}_{\mathbf{2}}=\mathbf{V C O}_{2} \mathbf{X} \mathbf{0 . 8 6 3} / \mathbf{V a l v}$

$$
\begin{aligned}
& =268 \times 0.863 / 3.9 \\
& =59.3
\end{aligned}
$$

6) B

According to the Bohr's equation. The dead space VD
$\frac{V_{d}}{V_{t}}=\frac{P_{a \mathrm{CO}_{2}}-P_{e \mathrm{CO}_{2}}}{P_{a \mathrm{CO}_{2}}}$
$\mathrm{VD}=500 \mathrm{X}(50-40) / 50$
7) B

According to the Winter's formula: the expected $\mathrm{PaCO}_{2}=1.5 \mathrm{X}(\mathrm{HCO} 3)+8 \pm 2$

$$
=21-25
$$

The measured PaCO 2 is higher than expected and thus pointing to hypoventilation (respiratory acidosis), if number is less than 21 then hyperventilation (respiratory alkalosis).
8) B

The oxygen content formula: $\mathbf{C a O}_{2}=\left[\left(\mathbf{1 . 3 4} \mathbf{x ~ H g b ~ x ~ S a O} \mathbf{O}_{2}\right)+(\mathbf{0 . 0 0 3} \mathbf{x ~ P a O} \mathbf{2})\right.$
9) B

Oxygen delivery: $\mathrm{DO}_{2}=\mathbf{C O X C a O}$

$$
=2.5 \text { X } 11.5
$$

$$
=278 \mathrm{ml} / \mathrm{min}
$$

10) C

Mechanical power of ventilator $=$ VE $X($ Peak pressure + PEEP + Flow/6) $/ 20$
VE: minute ventilation

$$
\begin{aligned}
& =9 \mathrm{X}(30+8+8.3) / 20 \\
& =20.83
\end{aligned}
$$

Mechanical power is highly related to VILI (Ventilator Induced Lung Injury)

