

1) B

Estimation of Healthy FRC $($ Men $)=5.48 \times$ Height (meters) -7.05
Estimation of Healthy FRC in women $=1.39 \times$ Height (meters) -0.424
2) B

Static compliance $=$ Tidal volume $(\mathrm{ml}) /$ Plateau pressure - Total PEEP

$$
\begin{aligned}
& =450 / \mathrm{15} \\
& =30 \mathrm{ml} / \mathrm{cmH}_{2} \mathrm{O} \text { or } 0.03 \mathrm{~L} / \mathrm{cmH}_{2} \mathrm{O}
\end{aligned}
$$

3) C

Elastance is reciprocal of compliance (1/compliance)

$$
\begin{aligned}
& =1 / 0.03 \\
& =33 \mathrm{cmH}_{2} \mathrm{O} / \mathrm{L}
\end{aligned}
$$

4) B

Resistance $=$ Peak inspiratory pressure - Plateau pressure / Flow

$$
\begin{aligned}
& =35-25 / 1 \mathrm{LS}(60 \mathrm{~L} / \mathrm{min}) \\
& =10
\end{aligned}
$$

5) C

Gross Estimantion ARDS FRC $=\frac{\frac{\text { Estimantion of Healthy FRC*Tidal Volume }}{(\text { Plat }- \text { PEEP })}}{\text { Estimantion of Healthy } F R C * 32}$
6) B

Total respiratory compliance

= VT / Paw - PEEPT
= 500 / 27-15
$=41.6 \mathrm{ml} / \mathrm{cmH} 2 \mathrm{O}$

Total respiratory resistance

= PPIP - Pplat / V'
$=31-27 / 0.75(45 \mathrm{~L} / \mathrm{min}=0.75 \mathrm{l} / \mathrm{s})$
$=5.3 \mathrm{cmH} 2 \mathrm{O} / \mathrm{l} / \mathrm{s}$
Chest wall compliance
= VT / End inspiratory Pes - End expiratory Pes
= 500 / 17-12
$=100 \mathrm{ml} / \mathrm{cmH} 2 \mathrm{O}$
Chest wall resistance
= Peak Pes - End inspiratory Pes / V'
= 18-17/0.75
$=1.3 \mathrm{cmH} 2 \mathrm{O} / \mathrm{l} / \mathrm{s}$

Lung compliance

= VT / End inspiratory PPL - End expiratory PPL
= $500 / 7$
$=71.4 \mathrm{ml} / \mathrm{cmH} 2 \mathrm{O}$

Lung resistance

= Peak PPL - End inspiratory PPL / V'
$=13-10 / 0.75(45 \mathrm{~L} / \mathrm{min}=0.75 \mathrm{l} / \mathrm{s})$
$=4 \mathrm{cmH} 2 \mathrm{O} / \mathrm{l} / \mathrm{s}$

Shokry M, Yamasaki K, Daoud EG. Can you calculate the total respiratory, lung, and chest wall respiratory mechanics? J Mech Vent 2020; 1(1):24-25. https://doi.org/10.53097/JMV. 10007
7) C

Trans-Pulmonary pressure $\mathrm{P}_{\mathrm{TP}}=$ Alveolar pressure ($\mathrm{P}_{\mathrm{ALV}}$) or Plateau pressure - Pleural pressure P_{PL} or Esophageal pressure

8) B

Time constant (TC) = Resistance x Compliance
e.g. $10 \times 50=0.5$ seconds

It is the time taken for the flow to increase or decrease 37% from the original
9) A

Peak \exp flow: $60 \mathrm{~L} / \mathrm{min}) .60 \times 37 \%=22.2$

10) C

Stress index is the slope of the airway pressure during VCV with constant flow in passive patient with no effort
SI < 1: alveolar recruitment \rightarrow Increase PEEP
SI $1 \rightarrow$ Adequate PEEP
SI > 1: alveolar distention \rightarrow Decrease PEEP

