

PATIENT VENTILATOR DYSSYNCHRONY

GEORGE SAVIO CHALAM RESPIRATORY THERAPIST SUHRC

DISCUSSION

Introduction

Phase variable

Dyssynchrony

INTRODUCTION

Mechanical ventilation is a commonly used intervention in the ICU.

Decrease work of breathing and maintain adequate levels of gas exchange.

Patient-Ventilator Dyssynchrony (PVD) is often described as a patient "fighting" the ventilator.

Patient-Ventilator Dyssynchrony (PVD) can be defined as a failure of synchronize the provided breath support from a ventilator with the patient's spontaneous effort.

Occur due to: inappropriate time and delivered parameter.

PVD leads to:

- i. Patient discomfort
- ii. Lung injury
- iii. Over sedation
- iv. Increase ventilator days.

WHAT WE CONTROL

Control variable

Pressure

Volume

Flow (indirect)

Time

Phase variable

DYSSYNCHRONY

Estimated occurrence of PVD is reported to range from 10% to 85%.

Dyssynchrony occurs through inappropriate trigger sensitivity, limit, and cycling.

FLOW DYSSYNCHRONY

Inadequate flow

when the patients flow demand is more than the ventilator is set up to provide. (flow hunger).

increased respiratory fatigue and oxygen consumption.

increase in transpulmonary pressure, developing lung injury

Cause of inadequate flow		Corrective measures	
۱.	Inadequate flow	VC	V –
	settings on ventilator	١.	Increase inspiratory
			flow –
II.	Fixed flow targeted		
	breaths	Π.	Switch to pressure
			modes as flow varie
III.	Acute respiratory		with patient effort.
	failure		
		III.	Pressure Modes -
IV.	Increased respiratory		Shorten rise time
	drive		
		IV.	Address underlying
V.	Fever Pain		cause - Pain, fever,
			etc.

FLOW DYSSYNCHRONY

Overshoot flow

ventilator is set to deliver a breath faster than the patient desires.

Recognition: An early spike in the pressure scalar is observed during the inspiratory phase.

patient discomfort, artificially shortens the breath.

Causes of Flow Overshoot	Corrective Measures
/entilator flow exceeds what patient wants –	
. Volume Modes: Flow set too high.	I. VCV - Decrease flow
 Pressure Modes: ITime too fast or Inspiratory pressure too high. 	II. Pressure Modes - Lengthen rise time

1.

Π

TRIGGER DYSSYNCHRONY

Auto trigger:

which occurs when **unwanted breaths are repeatedly delivered** due to a false activation of the ventilator

commonly observed in **flow sensed triggers** as they can be more sensitive.

Recognition: Continuous baseline artifact seen in the setting of rapid respiratory rate

respiratory alkalosis, failed spontaneous breathing trials leading to increased sedation, and prolonged course of mechanical ventilation.

Causes of Autotriggering		Corrective Measures	
I.	Cardiac oscillations	I.	Eliminate source: remove leaks and excess fluid
۱۱.	Air leak/ Fluid in circuit	١١.	Switch from flow to pressure sensor
.	Breath trigger too		
	sensitive	III.	Decrease sensitivity of trigger

Auto-triggering from leak

TRIGGER DYSSYNCHRONY

Failed trigger:

usually occurs because of the patient's insufficient respiratory effort to trigger the ventilator, resulting in a wasted effort from ventilator.

Also occur in response to elevated intrinsic PEEP (Auto PEEP).

Recognition: Intrinsic PEEP manifests itself in the expiratory flow not returning to zero before the next breath is delivered.

respiratory muscle fatigue, dynamic hyperinflation, reduced venous return, and cardiovascular collapse.

Causes of Trigger Failure

Corrective Measures

Ι.

- Intrinsic PEEP (AutoPEEP): Most common cause of trigger failure: -
- II. Obstructive lung diseases –
- III. Large tidal volumes -Rapid respiratory rates
- IV. Inappropriate Trigger settings: - Flow Trigger -Pressure Trigger
- V. Respiratory muscle weakness
- VI. Decreased neural drive

- Decreasing Intrinsic PEEP
- Reduce respiratory rate - Decrease inspiratory time —
- II. Reduce work of triggering ventilator -Increase extrinsic PEEP
- III. Increase trigger sensitivity
- IV. Consider removal or reduction of sedation, neuromuscular blockade, and neural drive depressants.

Trigger failure

CYCLE DYSSYNCHRONY

Pre- mature cycling:

Also known as breath stacking or double triggering,

occurs due to an **imbalance between the ventilator I-time**, tidal volume, or **flow being less** than that of the patient.

Tachypneic, strong contraction of the diaphragm, patient I-time is longer than the machine's Itime the ventilator deliver an untimely second breath.

	Causes of Premature Cycling		Corrective Measures	
Ι.	The ventilator I-Time is shorter than the patients intrinsic I-Time.	Ι.	VCV - Increase tidal volume - Decrease flow	
11.	Prolonged patient effort is sensed by the ventilator as a new breath	II.	Pressure Modes - Increase set I-Time	
III .	Low tidal volume in VCV			

CYCLE DYSSYNCHRONY

Delayed cycling

opposite of premature cycling

the machine's ltime is longer than the patients natural l-time.

The flow scalar is typically unchanged. end inspiratory pressure spikes are observed denoting patient effort to exhale prematurely.

Auto PEEP can develop due to longer than needed I-times.

Causes of Delayed Cycling		Corrective Measures	
I.	The ventilator I- Time is more than the patients intrinsic I-Time.	I.	VCV - Decrease tidal volume - Increase flow
II.	Large tidal volumes in VCV	١١.	Pressure Modes - Decrease set I-
III.	Long set I-time in PCV		Time

