Respiratory Management is Evolving (London Seminar) Doubletree Hilton West End, London, UK December 6, 2022, 13:30–14:00 HH

Would You Consider Automated Ventilation? automated ventilation—is it about patients, or about something else?

Courtesy by Marcus Schultz

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Disclosures

- Xenios/Fresenius, Germany
- Roche Diagnostics, Netherlands
- Ferring Pharmaceuticals, Denmark
- Exvastat, UK
- Hamilton Medical AG, Switzerland

Courtesy by Marcus Schultz

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

- why
- safety
- effectiveness
- efficiency
- future

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

- why
- safety
- effectiveness
- efficiency
- future

superiority & safety

Courtesy by Marcus Schultz

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

- why
- safety
- effectiveness
- efficiency
- future

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

QUESTION Does the use of a lower tidal volume (V_T) with mechanical ventilation affect important clinical outcomes in ARDS patients?

CONCLUSION Ventilation with a lower V_T than is traditionally used results in decreased mortality and increases the number of days without ventilator use.

ARDS Network investigators. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. [*New Eng J Med* 2000; **342**:1301 doi: 10.1056/NEJM200005043421801]

THE LANCET Respiratory Medicine

QUESTION How was ventilation managed and what were the outcomes in invasively ventilated patients with COVID–19 in the Netherlands during the first months of the outbreak?

CONCLUSION Lung–protective ventilation with low V_T and low ΔP was broadly applied and prone positioning was often used; applied PEEP varied widely, despite an invariably low respiratory system compliance.

The PRoVENT–COVID investigators. Ventilation management and clinical outcomes in invasively ventilated patients with COVID–19: a national, multicenter, observational cohort study. [Lancet Resp Med 2021; 9:132; doi:10.1016/S2213-2600(20)30459-8; Epub 2020 Oct 23]

BJA

QUESTION Is there heterogeneity in treatment effects in patients enrolled in the ART, using a machine learning approach?

CONCLUSION Recruitment maneuvers and titrated PEEP may be harmful in ARDS patients with pneumonia or requiring vasopressor support. Driving pressure appears to modulate the association between the ART study intervention, etiology of ARDS, and mortality.

Zampieri F for the ART Investigators. Heterogeneous effects of alveolar recruitment in acute respiratory distress syndrome: a machine learning reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial [*BJA* 2019; **123**:88; 10.1016/j.bja.2019.02.026]

THE LANCET Respiratory Medicine

QUESTION Does a mechanical ventilation strategy that is personalized to individual patients' lung morphology improve the survival of patients with ARDS when compared with standard of care?

CONCLUSION Personalization of ventilation decreased mortality in patients with ARDS [in the posthoc analysis]; a ventilator strategy misaligned with lung morphology substantially increases mortality.

LIVE–investigators. Personalized mechanical ventilation tailored to lung morphology versus low PEEP for patients with ARDS in France: a multicenter, single–blind, randomized clinical trial. [*Lancet Respir Med* 2019; **7**:870; doi:10.1016/S2213-2600(19)30138-9. Epub 2019 Aug 6]

THE LANCET Respiratory Medicine

QUESTION Does a mechanical ventilation strategy that is personalized to individual patients' lung morphology improve the survival of patients with ARDS when compared with standard of care?

CONCLUSION Personalization of ventilation decreased mortality in patients with ARDS [in the posthoc analysis]; a ventilator strategy misaligned with lung morphology substantially increases mortality.

LIVE–investigators. Personalized mechanical ventilation tailored to lung morphology versus low PEEP for patients with ARDS in France: a multicenter, single–blind, randomized clinical trial. [*Lancet Respir Med* 2019; **7**:870; doi:10.1016/S2213-2600(19)30138-9. Epub 2019 Aug 6]

QUESTION Is ΔP an index more strongly associated with survival than V_T or PEEP in patients who are not actively breathing?

CONCLUSION ΔP is the ventilation variable that best stratified risk; decreases in ΔP owing to changes in ventilator settings may be strongly associated with increased survival.

Amato M. Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. [*New Eng J Med* 2015; **372**:747; doi:10.1056/NEJMsa1410639]

THE LANCET Respiratory Medicine

QUESTION What is the association between exposure to different intensities of mechanical ventilation over time and intensive care unit (ICU) mortality in patients with acute respiratory failure?

CONCLUSION Cumulative exposure to higher intensities of mechanical ventilation was harmful, even for short durations.

FINDINGS

POPULATION

5141 Women 8267 Men

patients receiving ventilation for 4 hours or more

Median Age: 62 years

LOCATION

9 ICUs in Toronto, Canada

	Exposure to high driving pressure		Exposure to high mechanical power		
	HR estimate (95% Crl)	p value	HR estimate (95% Crl)	p value	
Baseline variables					
PaO ₂ /FiO ₂ , mm Hg	0-945 (0-896-0-994)	0.026	0-977 (0-930-1-031)	0.38	
Age, years	1·108 (1·048–1·160)	<0.0001	1.128 (1.080–1.182)	<0.0001	
APACHE III score	1.602 (1.526–1.680)	<0.0001	1.591 (1.524–1.669)	<0.0001	
APACHE pH	0.832 (0.809-0.859)	<0.0001	0.840 (0.820-0.864)	<0.0001	
Time-varying variables					
Days with driving pressure ≥15 cm H₂O	1.049 (1.023–1.076)	<0.0001			
Days with mechanical power			1.069 (1.047–1.092)	<0.0001	

1622 (20-6%) of 7876 patients died; 64 281 daily observations were recorded. HRs were the adjusted HRs associated with a 1-SD increment in the given variable. Values higher than 1 indicate increased mortality. The values used for SDs were as follows: PaO₂/FiO₂ ratio 119; pH 0·11; age 17 years; and APACHE III score 29. The effects of the number of days with either driving pressure greater than or equal to 15 cm H₂O or mechanical power greater than or equal to 17 J/min were estimated using Quasi-Poisson models in the joint model analyses. HR=hazard ratio. Crl=credible interval. PaO₂=partial pressure of oxygen. FiO₂=fraction of inspired oxygen. APACHE=Acute Physiology and Chronic Health Evaluation.

Table 3: Cumulative effect on HRs of exposure to high intensities of mechanical ventilation for 7876 patients with available data

Urner M. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. [Lancet Resp Med 2020; 8:905; doi: 10.1016/S2213-2600(20)30325-8]

Juffermans N Intensive Care Med 2022; in press

Healthcare Workers

Angus D. JAMA 2000; 284:2762

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Healthcare Workers

gaps between supply and demands

Daily confirmed new cases (5-day moving average)

Outbreak evolution for the current 10 most affected countries

Johns Hopkins University

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Healthcare Workers

 gaps between supply and demands

Potential gap between supply and demand of NHS doctors (FTE)

Gap between projected trend growth and required growth to meet expected growth in activity level

Mahidol University, Bangkok, Thailand

BMA 20210134

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

quarantine

communication

oxygen shortages

A History of Automated Ventilation

48:943

Buiteman-Kruizinga L Intensive Care Med 2022;

Despite years of research in mechanical ventilation many settings remained to be set by hand Here is when the ventilators became smarter

1992 PAV+

1998

2002

2006

2016

- why
- safety
- effectiveness
- efficiency
- future

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

- derangement requiring immediate intervention
- (severe) adverse events
- unsafe 'ventilation ranges'

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

- derangement requiring immediate intervention
- (severe) adverse events
- unsafe 'ventilation ranges'

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Collaboration for Research, Implementation and Training in Intensive CARE in ASIA (CRIT CARE ASIA)

courtesy by Marcus Schultz

Table 3. Safety of INTELLiVENT-ASV.

Author	Ref.	Ventilation parameter	Not acceptable range	Time within not acceptable range (min)	Time within not acceptable range (%)	Incidence of episodes of derangements (n/%)
Lellouche <i>et al</i> . (2013)	43	V _T (ml/kg PBW) etCO ₂ (mmHg) Plateau pressure (cmH ₂ 0)	> 12 < 25 or ≥ 51 > 35	1 ± 4 vs 15 ± 38*	0.5 vs 7.3*	-
	10	SpO_2 (%)	< 85			
(2016) (2016)	46	V _T (mi/kg PBW)	$< 3 \text{ or } > 12^{a/a/a}$	-	1.3 (0.1-8.0) Vs 0.8 (1.1-4.3)	-
		RR (breath/min)	< 10 or > 30° <10 or > 35^{b}	-	0.9 (1.4–8.5) vs 1.7 (2.7–14.1)	-
		P _{max} (cmH ₂ 0)	> 30 ^{a,b,c}	-	6.4 (13.3–31.6) vs 0.0 (7.1–30.4)**	-
		SpO ₂ (%)	< 90 ^{a,b} < 83 ^c	-	0.5 (0.6–3.0) vs 0.7 (1.4–6.1)	-
		etCO ₂ (mmHg)	> 55ª < 26 or > 43 ^b < 30 or > 65 ^c	-	0.0 (0.1–2.3) vs 0.1 (1.6–15.8)	-
Fot <i>et al</i> . (2017)	47	V⊤ (ml/ka PBW)	< 6	_	-	3/17 vs 11/55
		· · · · · · · · · · · · · · · · · · ·	> 10	-	-	1/6 vs 5/25
		etCO ₂ (mmHa)	< 25	-	-	5/28 vs 7/35
			> 45	-	-	6/33 vs 9/45
		RR (breath/min)	> 30	_	-	3/17 vs 7/35
		SpO ₂ (%)	< 90	-	-	0 vs 2/10
Chelly <i>et al</i> .	50	SpO_2 (%)	< 90	5 ± 12 vs 6 ± 11*	-	30/11 vs 50/19*
(2020)		- F - Z \\ - 7	< 85	$2 \pm 6 \text{ vs } 3 \pm 8^*$	-	69/26 vs 92/35*
De Bie <i>et al</i> .	51	V _T (ml/ka PBW)	> 12	-	1.5 ± 4.7 vs 3.6 ± 8.1*	23,710/4.7 vs 38,929/7.3** ^d
(2020)		P_{max} (cmH ₂ 0)	≥ 36			,,,,
		$etCO_2$ (mmHa)	< 25 or ≥ 51			
-		SpO ₂ (%)	< 85			

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Mahidol University, Bangkok, Thailand

162

58

< 470

8.5

162

58

< 410

8.5

160

51

< 410

8.7

155

47

< 370

9.5

155

47

< 330

9.5

150

42

< 300

10.5

160

51

< 360

8.7

150

42

< 340

10.5

- why
- safety
- effectiveness
- efficiency
- future

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

QUESTION In patients receiving post–operative ventilation after cardiac surgery, does INTELLiVENT–ASV improve the quality of breathing compared with conventional ventilation?

CONCLUSION Fully automated ventilation in patients after cardiac surgery optimized lung–protective ventilation during postoperative ventilation, with fewer episodes of severe hypoxaemia and an accelerated resumption of spontaneous breathing.

POSITiVE–investigators. Fully automated postoperative ventilation in cardiac surgery patients: a randomized clinical trial. [*BJA* 2021; **125**:739; doi: 10.1016/j.bja.2020.06.037]

QUESTION Is the amount of mechanical power of ventilation (MP) under adaptive support ventilation (ASV) different from that under nonautomated pressure–controlled ventilation?

CONCLUSION This study suggests ASV may have benefits compared with pressure–controlled ventilation with respect to the MP transferred from the ventilator to the respiratory system in passive invasively ventilated critically ill patients.

Buiteman–Kruizinga L. Comparison of Mechanical Power During Adaptive Support Ventilation Versus Nonautomated Pressure–Controlled Ventilation—A Pilot Study. [*Crit Care Explorations* 2021; **3**:e0335. doi: 10.1097/CCE.00000000000335]

QUESTION In COVID–19 patients with ARDS, does INTELLiVENT–ASV reduce the driving pressure and mechanical power of ventilation compared with conventional ventilation?

CONCLUSION INTELLIVENT–ASV reduces the intensity of ventilation in COVID–19 patients with ARDS.

Buiteman–Kruizinga L. Effect of INTELLiVENT-ASV versus Conventional Ventilation on Ventilation Intensity in Patients with COVID-19 ARDS— An Observational Study. [*J Clin Med* 2021; 10:5409]

QUESTION In COVID–19 patients with ARDS, does INTELLiVENT–ASV reduce the driving pressure and mechanical power of ventilation compared with conventional ventilation?

CONCLUSION INTELLIVENT-ASV reduces the intensity of ventilation in COVID-19 patients with ARDS.

Buiteman–Kruizinga L. Effect of INTELLiVENT-ASV versus Conventional Ventilation on Ventilation Intensity in Patients with COVID-19 ARDS— An Observational Study. [*J Clin Med* 2021; 10:5409]

frontiers Frontiers in Medicine

QUESTION What is the effect of automated closed–loop oxygen control, compared to automated ventilation with manual oxygen titrations, on time spent in predefined pulse oximetry (SpO₂) zones in pediatric critically ill patients?

CONCLUSION In this randomized crossover trial in pediatric critically ill patients under invasive ventilation with ASV, the percentage of time spent within in optimal SpO₂ zones increased with the use of closed–loop oxygen control.

Soydan E & Ceylan G. Automated Closed–loop FiO₂ Titration Increases the Percentage of Time spent in Optimal Zones of Oxygen Saturation in Pediatric Patients—a randomized crossover clinical trial [Frontiers Med 2022; 9:969218; doi: 10.3389/fmed.2022.969218]

QUESTION What is the efficacy of a closed–loop oxygen control in critically ill patients with moderate to severe acute hypoxemic respiratory failure (AHRF) treated with high flow nasal oxygen (HFNO).

CONCLUSION Closed–loop oxygen control improves oxygen administration in patients with moderate-to-severe AHRF treated with HFNO, increasing the percentage of time in the optimal oxygenation range and decreasing the workload of healthcare personnel.

INTERVENTION RESULTS POPULATION SpO2 in optimal range 45 patients under HFNO 100% **45** patients p<0.0001 under HFNO 100-4 hours manual or **90** 75% automated FiO₂ control 80of time Percentage of time 70patients with moderate to crossover severe ARF, including patients 60-Percentage 50% with COVID-19 50-4 hours automated or 40-Median Age: 49 year manual FiO₂ control 30· FiO2 range 25% LOCATION 20pO2 out of range (high (PRIMARY) OUTCOME Mode Suboptimal SpO2 (high) Optimal SpO2 10-Elosed-loop oxygen control Suboptimal SpO2 (low) 1 ICU percentage of time spent in O2 out of range (low) Manual oxygen titration in Spain the individualized optimal SpO₂ ranges Closed-loop Manual oxygen titration Closed-loop Manual oxygen titration

Roca O. Closed–loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen (HILOOP): a randomized cross-over study. [*Crit Care* 2022; **26**:108; doi10.1186/s13054-022-03970-w]

frontiers Frontiers in Medicine

QUESTION What is the effect of HFNO with closed–loop control of the fraction of inspired oxygen (FiO₂), compared to HFNO with manual titrations of the FiO₂, on time spent in predefined pulse oximetry (SpO₂) zones in pediatric critically ill patients?

CONCLUSION In this randomized crossover trial in pediatric critically ill patients under HFNO, the percentage of time spent within in optimal SpO₂ zones increased with the use of closed–loop FiO₂ control.

Sandal O. Closed–loop Oxygen Control Improves Oxygenation in Pediatric Patients Under High–flow Oxygen Therapy – a randomized crossover study. [Frontiers Med 2022; *in press*]

- why
- safety
- effectiveness
- efficiency
- future

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

- why
- safety
- effectiveness
- efficiency
- future

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Challenges

- reduction in workloads?
 - what is workload
 - how to measure workload
 - cost–effectiveness?
 - translation in better ... what?

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Mahidol University, Bangkok, Thailand

Future

- benefits of automated ventilation are 'safety' and 'effectiveness'
- automated ventilation is non-inferior to conventional ventilation with regard to outcomes
- Workloads, workloads
- SCARCITIES, scar

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Mahidol University, Bangkok, Thailand

Take Home Messages

- do no longer expect studies about superiority with respect to mortality
- expect studies about workloads & scarcities

University of Amsterdam, Amsterdam, The Netherlands

Oxford University, Oxford, UK

Mahidol University, Bangkok, Thailand