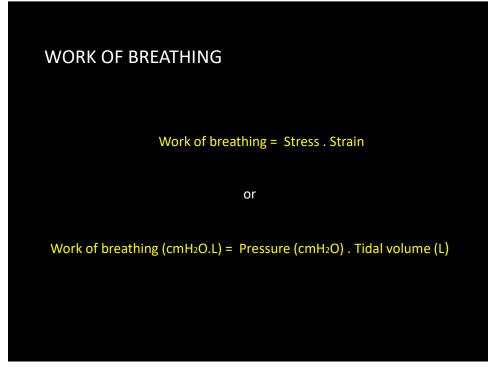
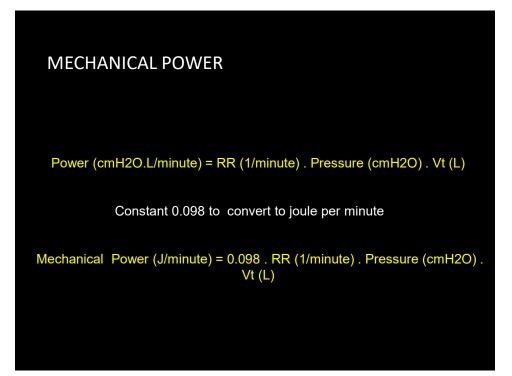
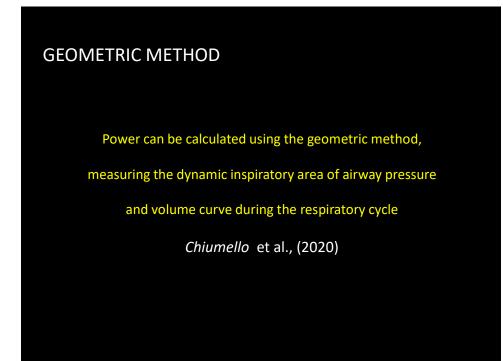
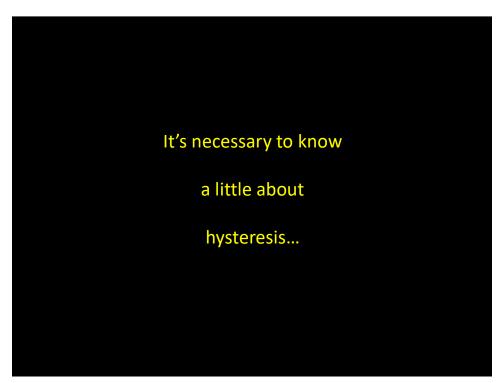

Work (J) = Force (N) . Displacement (m)

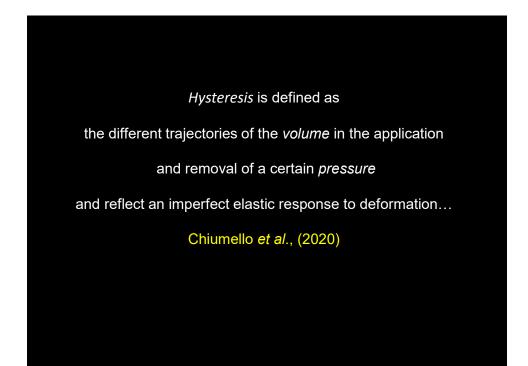

In the respiratory sistem,

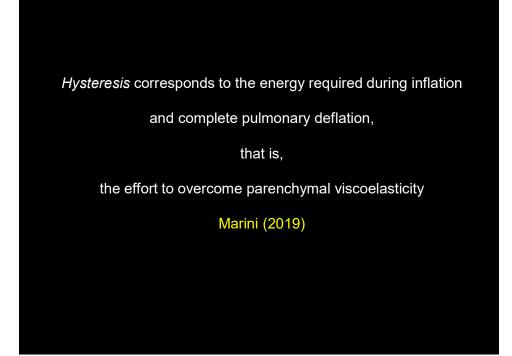

Pressures produce volume changes (MARINI, 2018)

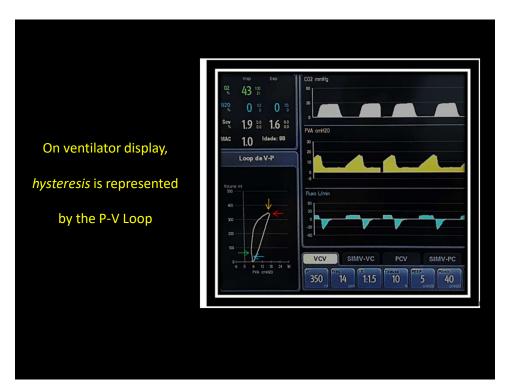
Work of breathing = Stress . Strain

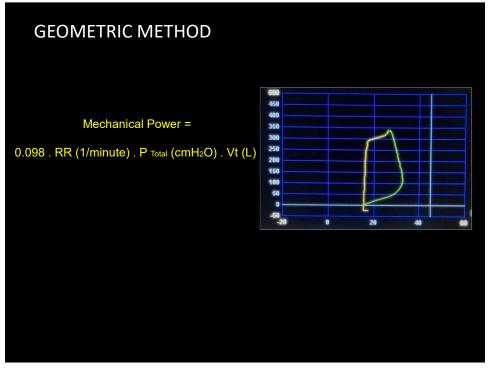


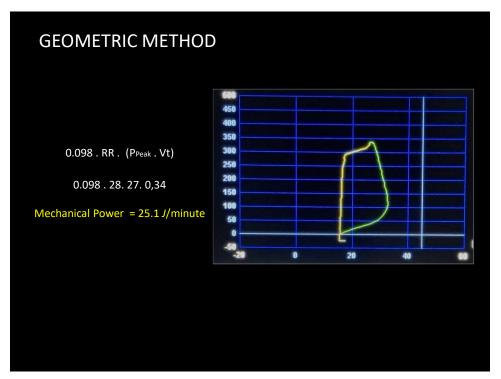


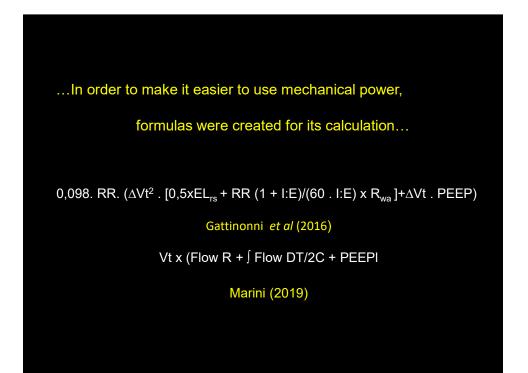




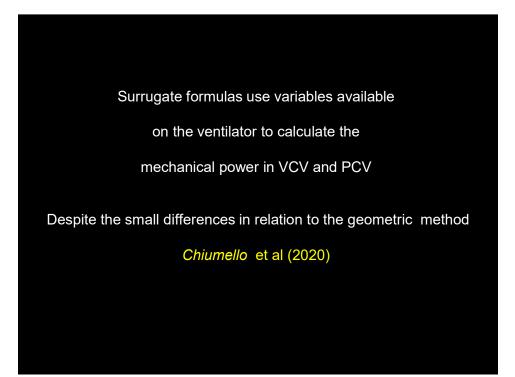


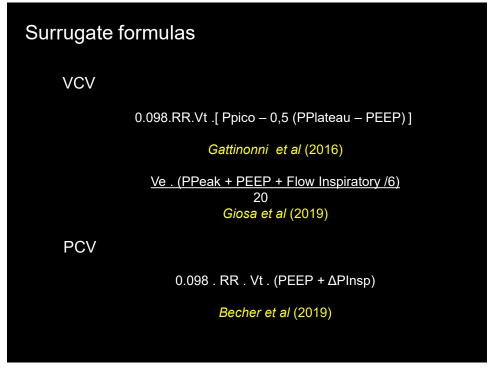


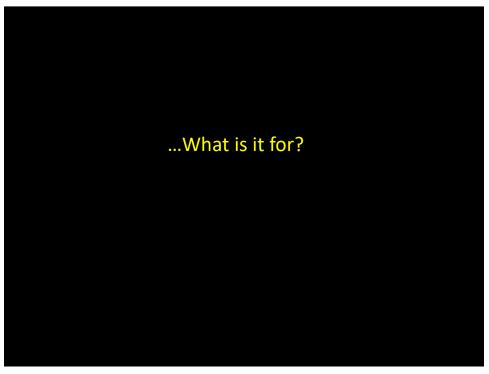


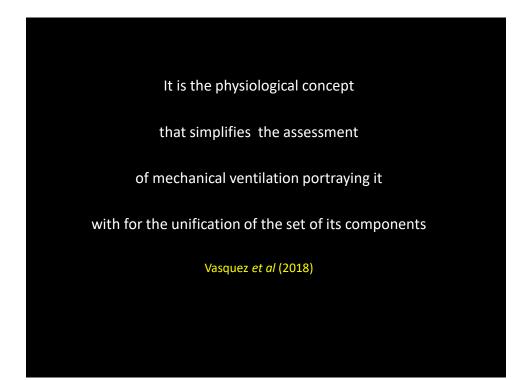


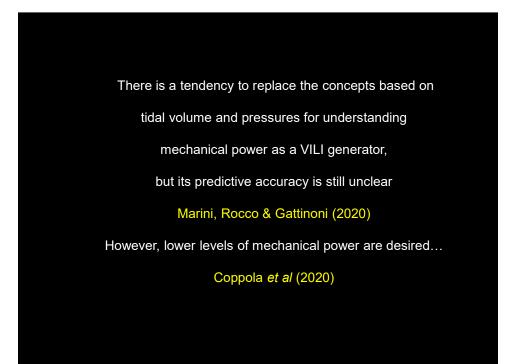


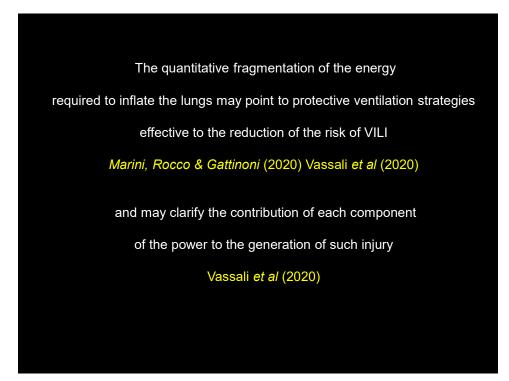


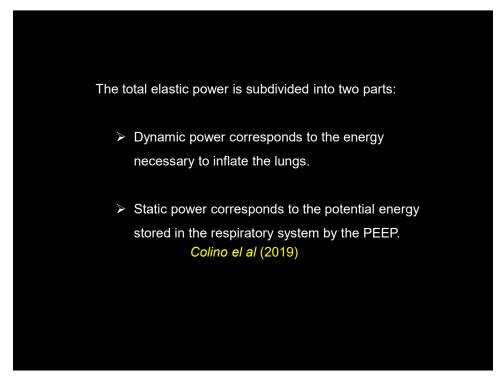


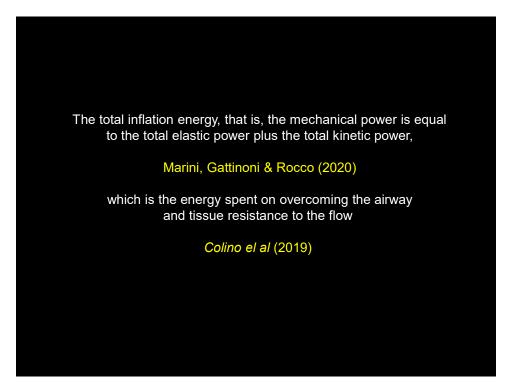


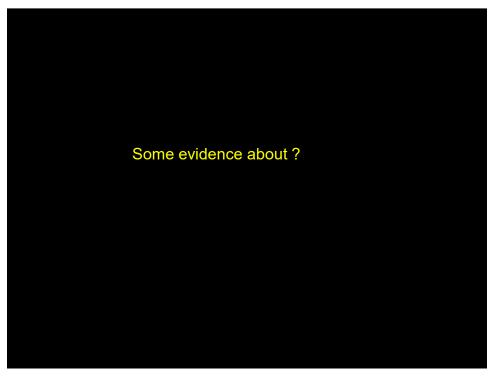












Mechanical power evidences

An elevated Mechanical Power regardless of the combination of its components can lead to VILI *Serpa Neto et al* (2018)

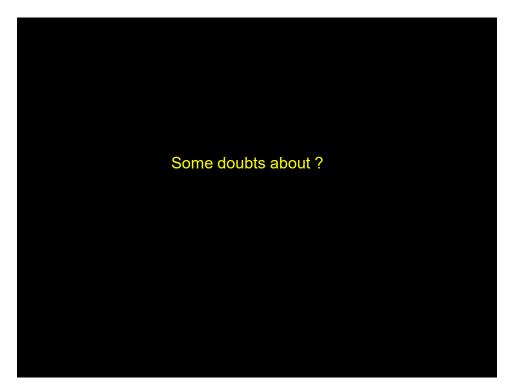
Especially when it exceeds 12J/minute, whereas over 17J/min it is associated with a higher mortality rate *Coppola el al* (2020)

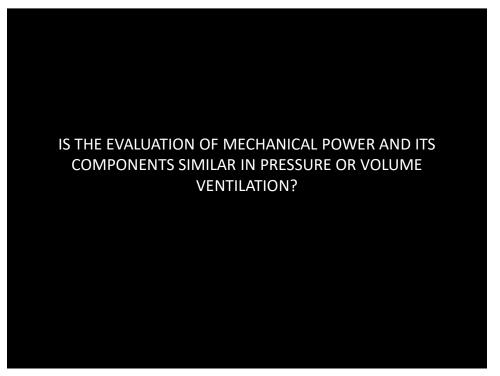
and between 19 to 24J/minute denotes the severity of ARDS *Maiolo et al* (2018)

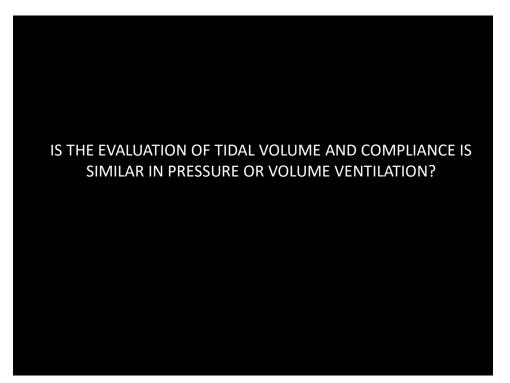
PCV

Mechanical power in burn patients were elevated and that, regardless of mechanical ventilation time, these values are related to mortality

	Number of days	Outcome	N	Mean	SD ±	P value
	1-5	Survival Death	5 9	17.60 24.42	5.54 7.76	
Mechanical power (J/min)	6-9	Survival Death	3 4	17.42 30.01	2.92 10.81	0.029*†
	10+	Survival Death	2 3	22.31 25.20	0.82 5.86	
		Death	3	25.20	5.86	
	Simo	nete, Albe	erti da	Silva	& Franck, 20	023


PCV		univariat and its analysis	interference te analysis c components, showed th correlates w V-2	of mechai but the nat only	nical power multivariate mechanical
Variables	P	value Multivariate	Risk Ranking	Odds Ratio	95% Confidence
VT (L)	< 0.001	0.236		0.911	(0.700 4.004)
				0.911	(0.780 - 1.064)
Elastance(cmH ₂ 0/L)	< 0.001	0.580		1.060	(0.780 - 1.064) (0.862 - 1.303)
					(
Elastance(cmH ₂ 0/L)	< 0.001	0.580		1.060	(0.862 - 1.303)
Elastance(cmH ₂ 0/L) ΔP (cmH ₂ 0)	< 0.001 < 0.001	0.580		1.060 1.239	(0.862 - 1.303) (0.708 - 2.166)
Elastance(cmH ₂ 0/L) ΔP (cmH ₂ 0) P _{Plateau} (cmH ₂ 0) Mechanical power	< 0.001 < 0.001 < 0.001	0.580 0.450 0.586		1.060 1.239 0.953	(0.862 - 1.303) (0.708 - 2.166) (0.802 - 1.133)


VCV		
\mathbf{V}	\ /	\sim
	V	


The univariate analysis did not show differences in outcome, whereas the multivariate analysis suggests interference in the outcome, further estimating that for every additional unit in mechanical power there is an increase of 13.4% on the mortality risk.

Variable	Ру	alue	Risk Ranking	Odds Ratio	95% Confidence Interval	
	Univariate	Multivariate		Cure rune	5570 Connactice milet var	
Age (Years)	< 0.001	< 0.001	Older ages	1.063	(1.029 - 1.099)	
Driving pressure (cmH ₂ 0)	< 0.001	0.245		1.245	(0.859 - 1.806)	
PEEP (cmH ₂ 0)	< 0.001	0.044	Lower values	1.217	(1.006 - 1.473)	
Elastance (cmH ₂ O/L)	< 0.001	0.029	Higher values	1.118	(1.012 - 1.237)	
Mechanical Power (J/min)	0.864	0.023	Higher values	1.134	(1.018 - 1.263)	

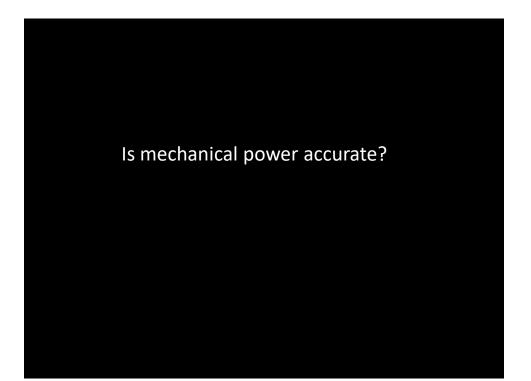
Franck, Franck & Feronato (2022)

VCV		SARS-CoV-2 TIDAL VOLUME & COMPLIANCE									
Variable	Outcome	N	Mean	Median	Min.	Max.	Standard Deviation	P value			
	Survival	53	53.3	54.0	35 24	74 82	8.9 8.9	0.903			
Finsp (L/min)	Death	94	53.1	53.5	24	04					
Finsp (L/min) Compliance (L/cmH2O)	Death Survival Death	94 53 94	0.034 0.027	0.034	0.016	0.060 0.077	0.010	< 0.001			
	Survival	53	0.034	0.034	0.016	0.060	0.010	< 0.001			

PCV			SARS-CoV-2 TIDAL VOLUME & ELASTANCE									
Variable	Outcome	N	Mean	Median	Min.	Max.	Standard Deviation	P value				
Mechanical power	Survival	84	28.06	25.39	11.92	83.85	11.14	0.009				
(J/min)	Death	79	33.34	28.79	14.49	92.88	13.92					
Finsp (L/min)	Survival	84	33.16	31.20	21.82	73.60	8.70	0.011				
Finsp (L/min)	Death	79	29.78	29.60	12.60	56.25	7.95					
Compliance	Survival	84	0.040	0.037	0.021	0.074	0.010	< 0.001				
(L/cmH ₂ 0)	Death	79	0.027	0.027	0.010	0.050	0.009					
Electores (cmU-0/I)	Survival	84	26.72	26.93	13.51	48.72	6.64	< 0.001				
Elastance (cmH ₂ 0/L)	Death	79	42.41	37.50	20.00	100.00	16.21					
Resistence	Survival	84	0.09	0.08	0.02	0.23	0.05	0.071				
(cmH ₂ O/L/min)	Death	79	0.11	0.09	0.06	0.41	0.07					
V _T (L)	Survival	84	0.49	0.48	0.30	0.92	0.10	< 0.001				
	Death	79	0.41	0.40	0.21	0.75	0.10					
	Death	79	0.41	0.40	0.54	0.75	0.10					
V† (L)	SULVIVA		0.44		0.34							
				& Daoud								

PC	V			BURNS TIDAL VOLUME & ELASTANCE							
	Outcome	N	Mean	Median	SD ±	Min	Max	P value			
RR	Survival	10	20.7	22.0	4.57	15	30	0.015*			
(Breath/min)	Death	16	26.43	26.5	5.92	17	37				
T _{insp}	Survival	10	0.94	0.95	0.15	0.65	1.2	0.233**			
(S)	Death	16	0.87	0.8	0.14	0.7	1.3				
PEEP	Survival	10	7.6	7.5	1.5	5	11	<0.001*†			
(cmH ₂ O)	Death	16	12.0	11.0	3.1	8	19				
P _{peak} (cmH ₂ O)	Survival Death	10 16	23.1 31.87	23.0 32.0	4.81 5.41	21	42	<0.001*			
P _{plat}	Survival	10	18.3	19.0	3.3	12.0	23.0	<0.001*			
(cmH ₂ O)	Death	16	29.46	29.0	5.19	19.0	38.0				
ΔP _{insp}	Survival	10	15.5	15.5	4.64	7	22	0.033*			
(cmH ₂ O)	Death	16	19.875	20.5	4.88	7	27				
∆P	Survival	10	9.57	9.4	2.93	6	13.2	<0.001*			
(cmH₂O)	Death	16	15.25	15.4	3.03	9.5	19.4				
Vт	Survival	10	0.57	0.56	0.18	0.33	0.97	0.005*			
(I)	Death	16	0.41	0.39	0.08	0.27	0.57				

Simonete, Alberti da Silva & Franck (2023)



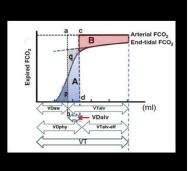
The increase in Mechanical Power with increased dynamic elastic power and decreased static elastic power influenced the mortality rate of

Variable (J/min)	Outcome	N	Media	Median	Min.	Max.	Standard Deviation	<i>P</i> value
Mechanical Power or Total Inspiratory Energy	Survival	53	26.80	25.24	15.83	44.98	7.59	0.864
	Death	94	26.58	24.96	13.72	50.01	50.01	
Elastic Energy Dynamic	Survival	53	6.17	5.93	2.21	13.89	2.25	< 0.001
Inflation	Death	94	8.41	7.76	1.96	24.11	3.51	
Inspiratory Flux Resistance	Survival	53	4.56	3.81	0.83	11.66	2.73	0.562
Energy	Death	94	4.81	4.51	1.51	11.11	2.18	
	Survival	53	16.07	15.61	6.27	27.59	5.07	0.005
Static Elastic Energy	Death	94	13.36	11.71	5.35	33.34	5.84	

patients with SARS-CoV-2

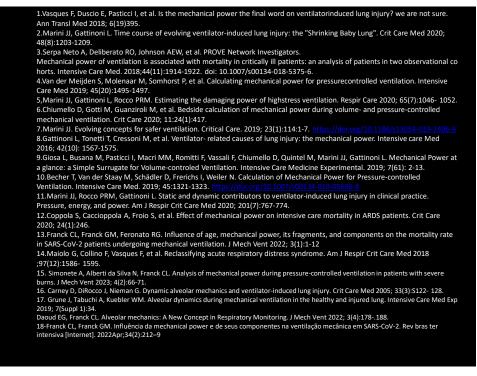
(Franck, Franck & Feronato, 2022)

Global lung mechanics provide for a poor surrogate of alveolar dynamics and methods for the in-depth analysis of alveolar dynamics on the level of individual alveoli are sparse and afflicted by important limitations.


Grune, Tabuchi & Kuebler, 2019

Alveolar mechanics: A new concept in respiratory monitoring

The concept of alveolar compliance depend on measuring the transalveolar pressure using esophageal balloon manometry and alveolar tidal volume using volumetric capnometry.


This may have multiple implications in the understanding of components of ventilator induced lung injury specifically alveolar stress, strain, and mechanical power.

Daoud & Franck, 2023.

