

Declaration

Shareholder in **TIRO MEDICAL LIMITED** (5024040) <u>https://app.companiesoffice.govt.nz/co/5024040</u> Med tech company registered in Christchurch , NZ

Asynchrony is bad! Why is minimising asynchrony is important? Asynchrony is associated with: Prolonged ventilator support, sleep disorders, poor lung aeration, longer stay in the intensive care unit and mortality. Or more simply put: =>BADNESS de Wit M, et al, *Crit Care Med 2009* Thille AW et al, *Int Care Med 2006* Colombo D, et al *Crit Care Med 2011* Blanch L, et al *Int Care Med 2015* Thille AW et al, *Int Care Med 2007* Colombo D, et al *Crit Care Med 2011* Kacmarek RM, *Minerva Anes 2016*;

 Recognising Asynchrony

 To manage asynchrony you first have to recognise it!...

 Image: synchrony you have to measure it!

 https://www.cartoonstock.com/directory/t/recognise.asp?expanded=CX906583

The importance of measurement

"If you cannot measure it, you cannot improve it."

"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind." -Lord Kelvin

Lord Kelvin, a Scottish mathematician, who formulated the first and second laws of thermodynamics. *Science*, 09/08/2020, https://www.facebook.com/sciencetune/photos/a.104936004563873/152838873106919/?type=3&theater accessed 25/08/2023

5

A Brief history of Asynchrony- Definitions RESPIRATORY CARE Types of asynchronies During the Transition From Inspiratory Period **Expiratory Period** Inspiration to Expiration · Trigger delay · Double triggering due to short cycling or reverse triggering · Ineffective inspiratory effort · Inspiratory flow mismatching · Expiratory muscle contraction due to prolonged cycling · Auto-triggering · Short cycling · Expiratory muscle contraction · Prolonged cycling · Reverse triggering Subirà C, de Haro C, Magrans R, Fernández R, Blanch L. Minimizing asynchronies in mechanical ventilation: current and future trends. Respiratory care. 2018 Apr 1;63(4):464-78.

Defining Asynchrony Index

13

A Brief history of Asynchrony- Strategies

ncrease gas flow: decrease respiratory drive and assess adequacy of analgesia and sedation: check
for dyspnea.
ncrease or decrease inspiratory period; check cycling off in pressure support; use proportional modes.
acrease ventilator inspiratory time; try pressure support, titrating flow termination criteria to improve synchrony, or proportional modes; consider paralyzing agents if tidal volume is too elevated (> 8 mL/kg) in ARDS or in patients with risk factors for developing lung injury.
Decrease sedation; check breathing frequency; consider paralyzing agents if tidal volume is too elevated (> 8 mL/kg) in ARDS or in patients with risk factors for developing lung injury.
educe inspiratory period by checking cycling off and tidal volume; check for comfort.
heck trigger sensitivity and excessive air trapping; check for excessive assistance (excessive set frequency and or inspiratory time during controlled modes or excessive pressure support ventilation level); counterbalance auto-PEEP by using external PEEP; check for dyspnea; consider proportional modes.
heck trigger sensitivity; check for leaks and water in the ventilator circuit.
heck for excessive assistance; check for air trapping and auto-PEEP.

Respiratory care. 2018 Apr 1;63(4):464-78.

A brief review of asynchrony	
Intensive Care Med (2008) 34:1477–1486 DOI 10.1007/s00134-008-1121-9	ORIGINAL
Arnaud W. Thille Belen Cabello Fabrice Galia Aissam Lyazidi Laurent Brochard	Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation
12 patients with more than 10% of assigned to pressure support reduction of the second structure support structure structu	ineffective breaths on pressure-support ventilation were randomly tion, insufflation time reduction, and change in end-expiratory pressure.
Results:	
 Reducing pressure support from 20 	h_2 to 13 reduced tidal volume from 10.2 to 5.9 ml/kg , and reduced ineffective
triggering, from 45% of respiratory	emorts [IQR 36–52] to 0% [0–7], (p < 0.01] completely abolishing ineffective triggering
 Reducing the insufflation time decr 	reased the asynchrony index from 45% [IOR 36–52] to 7% [3–15]. (p < 0.01) and also
reduced PEEPi	
Thille AW, Cabello B, Galia F, et. al. Redu	ction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Medicine. 2008 Aug;34:1477-86.

A Brief history of Asynchrony- (Clinical Studies
Intensive Care Med (2015) 41:633–641 DOI 10.1007/s00134-015-3692-6	ORIGINAL
Lluís Blanch Ana Villagra Bernat Sales Jaume Montanya	Asynchronies during mechanical ventilation are associated with mortality
Prospective, observational study of 50 I Using <i>Better Care</i> [™] Software distinguishes modes and dete aborted inspirations, and short and pro Results:	CU patients cts ineffective inspiratory efforts during expiration (IEE), double- triggering, longed cycling to compute the asynchrony index (AI) for each hour.
• 7,027 h of MV comprising 8,731,981	breaths
 AI was 3.41 % [IQR 1.95–5.77]; the r Patients with Al>10 vs ≤10 %, had sin trend toward longer duration of MV. 	nost common asynchrony overall and in each mode was IEE [2.38 % (IQR 1.36–3.61)]. milar reintubation and tracheostomy rates, but higher ICU and hospital mortality and a
Blanch L, Villagra A, Sales B, Mont Asynchronies during	anya J, Lucangelo U, Luján M, García-Esquirol O, Chacón E, Estruga A, Oliva JC, Hernández-Abadia A mechanical ventilation are associated with mortality. <i>Intensive care medicine. 2015 Apr;41:633-41</i> .

Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, García-Esquirol O, Chacón E, Estruga A, Oliva JC, Hernández-Abadia A Asynchronies during mechanical ventilation are associated with mortality. *Intensive care medicine*. 2015 Apr;41:633-41.

A Brief history of Asynchrony- Clinical Studies

RESPIRATORY CARE

Neurally-Adjusted Ventilatory Assist Versus Noninvasive Pressure Support Ventilation in COPD Exacerbation: The NAVA-NICE Trial

40 subjects with COPD and acute hypercapnic respiratory failure randomized to either NIV-NAVA (n=20) or NIV-PSV (n =20)

Results:

NIV-NAVA significantly reduced the total number of asynchrony events compared to NIV-PSV. median, [IQR]) 22 [15-32.5] vs. 65 (50.75-104.25), P = .002.

Severe asynchrony (AI > 10%) was lower in NIV-NAVA than in NIV-PSV. 2 vs. 14 events, P < .001.

Tajamul S, Hadda V, Madan K, et. al. Neurally-adjusted ventilatory assist versus noninvasive pressure support ventilation in COPD exacerbation: the NAVA-NICE Trial. *Respiratory care. 2020 Jan 1;65(1):53-61.*

A Brief history of Asynchrony- Clinical Studies

A Brief history of Asynchrony- Meta-Analysis

		PSV		NAVA			Mean Difference			Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	Year	r IV, Random, 95% Cl	
3.1.2 Adult studies											
Piquilloud et al. 2012	23.6	36.6	13	6	6.6	13	11.3%	17.60 [-2.62, 37.82]	2012	2 +	
Schmidt et al. 2012	37.2	25.5	17	9.9	8.9	17	12.5%	27.30 [14.46, 40.14]	2012	2	
Almayrac et al. 2013	17.3	17.5	9	18	10.5	9	12.5%	-0.70 [-14.03, 12.63]	2013	3	
Bertrand et al. 2013	13.4	8.6	13	3.8	3.8	13	13.4%	9.60 [4.49, 14.71]	2013	3	
Doorduin et al. 2014 Subtotal (95% CI)	23	12.6	12 64	5.3	2.5	12 64	13.2% 62.9%	17.70 [10.43, 24.97] 13.89 [6.04, 21.75]	2014	4 →	
3.1.4 Pediatric studie	s 65.5	25.2	6	23	32	6	11 2%	63 20 142 87 83 531	2013		_
3.1.4 Pediatric studie	s										
Vignaux et al. 2013	65.5	25.2	6	2.3	3.2	6	11.2%	63.20 [42.87, 83.53]	2013	3	-
Baudin et al. 2014	38	21	11	3	3	11	12.6%	35.00 [22.46, 47.54]	2014	4	
Lee et al. 2015 Subtotal (95% Cl)	74.5	5.4	15 32	17.6	11.3	15 32	13.3% 37.1%	56.90 [50.56, 63.24] 51.03 [34.96, 67.10]	2015	5	
Heterogeneity: Tau ² =	156.11;	Chi² =	10.34,	df = 2 (F	P = 0.0	06); l²	= 81%				
Test for overall effect:	Z = 6.22	(P < 0	.00001)							
Total (95% CI)			96			96	100.0%	28.02 [11.61, 44.42]			
Heterogeneity: Tau ² =	516.00;	Chi ² =	166.79	df = 7	(P < 0.	.00001	; l² = 96%				400
Test for overall effect:	Z = 3.35	(P = 0)	.0008)		S						100
							0 4 004			FOV NAVA	

Sehgal IS, Dhooria S, Aggarwal AN, et.al. Asynchrony index in pressure support ventilation (PSV) versus neurally adjusted ventilator assist (NAVA) during non-invasive ventilation (NIV) for respiratory failure: systematic review and meta-analysis. *Intensive care medicine*. 2016 Nov;42:1813-5.

A Brief history of Asynchrony- Clinical Studies RESPIRATORY CARE Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation (PSV) during non-invasive ventilation (NIV): systematic review and meta-analysis The PubMed, Cochrane Library, Web of Science, OpenGrey, and Embase databases were searched for appropriate clinical trials comparing NIV-NAVA with NIV-PSV for adult subjects. Comparisons of asynchrony index (AI), types of asynchrony, and clinical outcomes were pooled. Results: (15 studies; 615 subjects). By comparison of NAVA to Pressure Support Ventilation (PSV): • Al lower ([MD] -14.70 [95% CI -23.20 to -6.19]), P< .001). AI lower in COPD exacerbation (MD -14.56 [95% CI -21.04 to -8.09], P < .001) and non-COPD (MD -3.02 [95% CI -4.44 to -1.61], P < .001). Severe asynchrony lower (OR 0.06 [95% CI 0.03–0.11], P < .001). Inspiratory trigger delay lower (MD –129.60 [95% CI –148.43 to –110.78], P <.001). Longer ICU length of stay (MD 1.22 [95% CI 0.44-2.00], P = .002). Higher discomfort (MD 0.62 [95% CI 0.02–1.21], P = .040). Teng W, Sang L, Cao L. Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation (PSV) during non-invasive ventilation (NIV)

systematic review and meta-analysis. Respiratory Care. 2022 Feb 17

45

What do we need to think about?

Some questions to ponder....

 Why is asynchrony software not available for use on all patients undergoing ventilation? Is this another case of the proverbial, "If you don't take a temperature, you can't find a fever?"

[Roy Basch's rules from House of God]

- Is this why is asynchrony is so poorly appreciated at the bedside?
- Why, in spite of two decades of application of PROPORTIONAL breathing assistance modes (NAVA and PAV), have these modes not become more readily available and adopted? Should they be available on all ventilators?

https://www.modernanalyst.com/Resources/BusinessAnalystHumor/tabid/218/ID/6133/Hospital_Medical_Software_Design.aspx (accessed 4 Sept 2023)

What do we need to think about?

- Vaccine development during Covid-19 pandemic took about 18 months. However, new developments in mechanical ventilation may take more than the clinical career of many clinicians! (>30 years)
- This lack of progress is not just limited to proportional ventilation modes, but all innovations in mechanical ventilation.
- Failure to translate ventilation research into clinical practice at the bedside fails to correct the harm and excess mortality from poor practices in mechanical ventilation

