

INTRODUCTION

WEANING PROCESS ONE OF THE MOST CHALLENGING TOPIC - SŤUDIED SINCE 70'S & 80'S

- CONSIDERABLE WORLDWIDE VARIATION IN WEANING **PRACTICES**
- NOT MANY GUIDELINES

WEANING CLASSIFICATION:

Simple weaning 70%

ONCE A PATIENT IS INTUBATED, WE DO CONTINUOUS WORK TO GET RID OF PROBLEMS TO AIM AT EXTUBATION

- Simple Weaning successful extubation on the first attempt without difficulty. 70%
- Difficult Weaning failed on the initial attempt and require up to 7 days to achieve successful extubation, 15%
- Prolonged Weaning > 7 days to discontinue invasive ventilation from the first attempt, 15%

Difficult Prolonged weaning 15%

(Neeraj M Shah et al., Prolonged weaning from mechanical ventilation; Who, What, When, and How?, 2024)

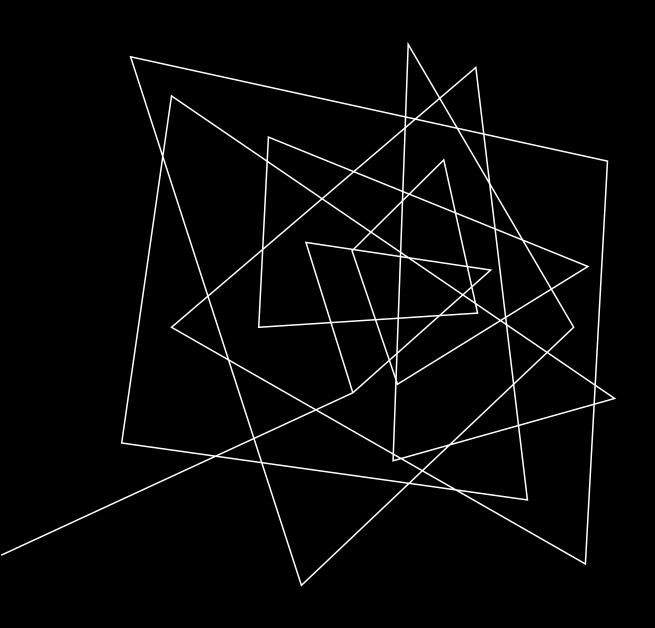
GOAL:
Extubation
!!

PROLONGED MECHANICAL VENTILATION (MV)

- 15% of all MV patients need prolonged ventilator care and the rate will continue to rise
- > 21days : Poor prognosis with 2-year mortality 25%
- > 50% of patients who didn't succeed weaning in ICU will be liberated from MV in the post acute setting

(Tamas Dolinay, et al. Ventilator Weaning in Prolonged Mechanical Ventilation – A Narrative Review, 2024)

TRACHEOSTOMY:


- 8 % of all MV patients undergo tracheostomy; improvement of physiology.
- The timing remains controversial
- Early tracheostomy could result in more ventilatorfree days, but not necessarily survival
- Cuff off → Speaking valve w/ vent and w/o vent →
 T capped → Decannulation

(Tamas Dolinay et al., Ventilator Weaning in Prolonged Mechanical Ventilation – A narrative Review, 2024)

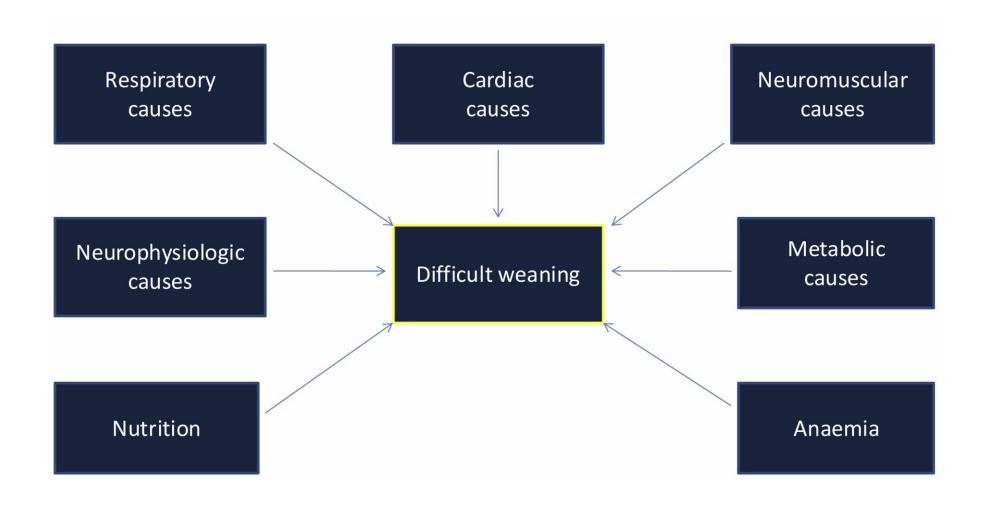
COST:

- Patients > 3 weeks on MV, three times more cost in a hospital than non ventilator patients
- Uses > 1/3 ICU budget

(Tamas Dolinay et al., Ventilator Weaning in Prolonged Mechanical Ventilation – A narrative Review, 2024)

CAUSES AND
PATHOPHYSIOLOGY
OF WEANING
FAILURE

CAUSES OF DIFFICULT WEANING


- Disease-imposed factors
 - -- Reversible factors??

- Clinician-imposed factors
 - -- Clinician delay in recognizing the ability of a patient
 - -- Inappropriate ventilator setting; overload / underload, blocking recovery

CAUSES OF DIFFICULT WEANING

→ AGGRESSIVELY SEEK & TREAT REVERSIBLE CAUSES

RESPIRATORY CAUSES

Medical History (Background) to set up goal & expectation

1. Any Lung issues?

COPD, Asthma, ARDS, Lung CA, Pulmonary fibrosis, PNA, etc

2. Any Other organs?

Heart, Brain, Kidney, Liver, etc..

3. How about Irreversible factors?

Neuromuscular and chest wall disorders?

3. Anything else?

Obesity, Drug user, Psychiatric issues?

Ventilation

Demand

RESPIRATORY CAUSES

How is Ventilation Demand? The Demand is increasing??

If so, what causes that??

Hypoxemia?

Dead Space increased?

Excess CO2 production? (metabolic status changed?)

Metabolic Acidosis?

Neuropsychiatric factors?

Drive

RESPIRATORY CAUSES

How is Ventilation Drive? The Drive is decreasing??

If so, what causes that??

Excessive sedation?

Metabolic alkalosis?

Central Nervous System Disease?

Central Sleep Apnea?

Obese Hypoventilation Syndrome?

RESPIRATORY CAUSES

Resistance

How is Airway Resistance? Raw is increasing??

If so, what causes that??

Artificial Airway? → Consideration of ET/trach tube size

Secretion/Mucus Plug ? → Humidification, Suctioning, Bronchoscopy

Bronchospasm ? → Bronchodilator

Bronchial Wall Edema ? → ARDS, Auto PEEP → Adjust E time/PEEP

Lung

RESPIRATORY CAUSES

How is Lung Compliance? Compliance is decreasing??

If so, what causes that??

Chest Wall

Edema, Increased Abdominal Pressure, Pleural Effusion, Obesity

Lung

Auto PEEP, Alveolar filling, PNA, Interstitial lung disease/fibrosis

Set up PEEP to make Ptrans > 0

Thoracentesis

Diuretics

Suction/Bronchoscopy

RESPIRATORY CAUSES

Critical illness-associated diaphragmatic weakness (CIDW)

A progressive decline in diaphragm performance resulting from mechanical ventilation, systemic inflammation, and direct effects on the phrenic nerve

Pathophysiology

Underuse (Disuse Atrophy) → Leads to Atrophy

Overuse (Excessive Inspiratory Effort) -> Causes Injury (VILI)

- 60-80% of mechanically ventilated ICU patients;
- Ventilator-Induced Diaphragm Dysfunction (VIDD); diaphragm thinner and fibrosis
- Strongly correlates with prolonged ventilation & weaning failure

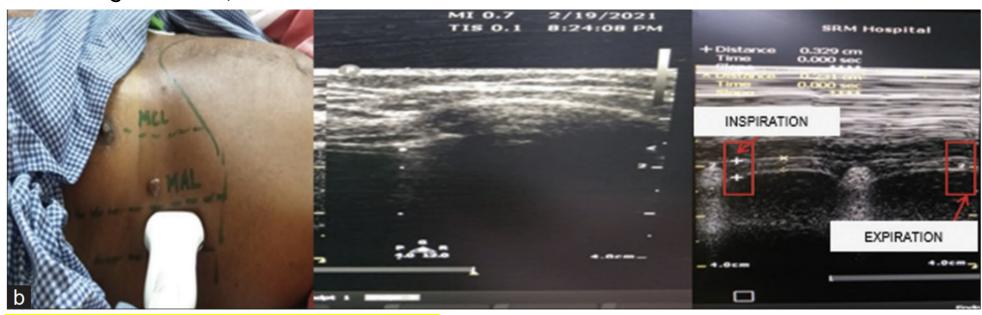
HOW TO ASSESS CIDW?

Ravi Saravanan, et al. Role of diaphragm ultrasound in weaning mechanically ventilated patients. 2022

Ultrasound (Diaphragm Imaging)

Promising bedside, noninvasive real time monitor

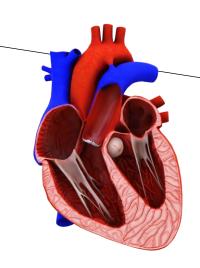
Diaphragm Excursion (DE) DE < 1.2cm High risk


HOW TO ASSESS CIDW?

Ravi Saravanan, et al. Role of diaphragm ultrasound in weaning mechanically ventilated patients. 2022

Ultrasound (Diaphragm Imaging)

Promising bedside, noninvasive real time monitor



Diaphragm Thickening Fraction (TF) TF=(TDmax-TDmin)/TDmin *100

TF > 30% normal, if <20% suggest dysfunction

CARDIAC CAUSES

Important contributor to weaning failure

(Christina Routsi, Weaning failure of cardiovascular origin, 2019)

"Weaning-Induced" cardiac failure was introduced in 2002.

Weaning failure resulted from congestive heart failure are common especially among **COPD/underlying cardiac disease**.

Weaning failure was more frequently due to varying degrees of LV diastolic than systolic dysfunction

The success of weaning depends on the ability of respiratory system and cardiac pump to tolerate these changes

Cardiac Causes

(Christina Routsi, Weaning failure of cardiovascular origin, 2019)

CARDIAC CAUSES

Weaning induced pulmonary edema

SBT; negative intrathoracic pressure

Venous return pressure ingredient

RV preload
Central Blood Volume
LV preload

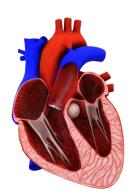
Surrounding pressure of LV
LV afterload

WOB

Adrenergic tone PA occlusion pressure

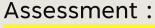
Pulmonary Edema **Cardiac Causes**

CARDIAC CAUSES


Important contributor to weaning failure

Early identification of high-risk cardiovascular origin & Accurate diagnosis are crucial

Until appropriate evidence emerges, tailoring cardiovascular treatment & monitoring the individual responses to therapy should be carefully performed


Suspected weaning failure of cardiovascular origin

CARDIAC CAUSES

Confirmed weaning failure of cardiovascular origin
Determine etiology and start appropriate treatment

Predisposing risk factors, cardiovascular/pulmonary Exclude others

TTE (transthoracic echocardiography)

Chest Ultrasound

BNP(Brain Natriuretic Peptide)

SvO2

PA catheter

Coronary angiography, etc

Combine different techniques, assess before / during SBT

CARDIAC CAUSES TREATMENT

Cardiac Causes

Systolic LV dysfunction

Fluid removal guided by BNP Consider Inotropic Agents

Diastolic LV dysfunction

Fluid removal guided by BNP
Treat HTN
Treat myocardial ischemia
Treat tachycardia

Coronary disease Vasodilator, antiplatelets

If no improvement, consider coronary reperfusion

(Christina Routsi, Weaning failure of cardiovascular origin, 2019)

CARDIAC CAUSES TREATMENT

Cardiac Causes

COPD w HTN during SBT

Consider Nitrates

Consider Calcium channel blockers

Hypertrophic cardiomyo pathy

Beta-blockers

Calcium channel blockers

(Christina Routsi, Weaning failure of cardiovascular origin, 2019)

PSYCHOLOGICAL CAUSES:

Psychological Causes

- Up to 40% of patients who went through weaning
- Symptoms such as anxiety, fear, delirium
- Delirium; twice as likely to be difficult to wean
- No studies investigating psychological interventions in the prolonged weaning population
- Historical data demonstrating biofeedback techniques interventions....some benefits???

(Neeraj M Shah et al., Prolonged weaning from mechanical ventilation; Who, What, When, and How?, 2024)

NUTRITIONAL CAUSES:

Nutritional Causes

- Optimal nutrition strategy remains unclear on MV patients
- Malnutrition exacerbates muscle wasting and delays recovery
- Protein intake ≥ 1.2-2.0 g/kg/day may help to prevent muscle loss per ESPEN guidelines for ICU Nutrition
- Nutritional optimization is crucial; paired w rehab

Under or Over – feeding ??

METABOLIC CAUSES

Metabolic Causes

Low phosphate
Low magnesium
Low potassium

Corticosteroids

Muscle Weakness Hyperglycemia

Tailored Treatment Strategy !!

AGGRESSIVELY SEEK & TREAT REVERSIBLE CAUSES!!

RISK OF PROLONGED WEANING:

- Infection such as VAP
- Ventilator-induced Lung Injury (VILI)
- Need for sedation and associated complication
- Airway trauma from prolonged intubation
- Deconditioning
- Cost

(Neeraj M Shah et al., Prolonged weaning from mechanical ventilation; Who, What, When, and How?, 2024)

MINIMIZE RISK OF VAP:

- One of the most common causes of prolonged weaning;
 length of stay and mortality
- To reduce the risk;
 - -- use of subglottic secretion drainage
 - -- nursing in the semi-fowler >30 degrees
 - -- minimizing sedation use
 - -- oral care chlorhexidine rinse and mechanical cleaning
 - -- maintain respiratory muscle for secretion clearance
 - -- early tracheostomy

KEY FACTORS FOR SBT READINESS:

- Improved initial insult of respiratory failure
- Adequate cough
- Absence of excessive secretion
- Stable cardiovascular status
- Stable metabolic status
- Adequate oxygenation
- Stable ventilation rate, Vt, PS, WOB, no significant respiratory acidosis
- Adequate mentation

WEANING GUIDELINE

AN OFFICIAL ATS/ACCP CLINICAL PRACTICE GUIDELINE, 2017

GUIDELINE

Pressure Augumentation during SBT

(moderate auality)

Initial SBT should be conducted with inspiratory pressure augmentation (5-8 cm H2O) rather than without (T piece or CPAP)for acute hospitalized patients ventilated >24hrs

Ventilator Liberation Protocols

(low quality)

Acute hospitalized patients on vent > 24hrs should be managed with ventilator liberation protocol rather than no protocol

Preventative Noninvasive Ventilation after Extubation

For patients on the vent >24 hrs and high risk of extubation but passed SBT, recommend NIV after extubation

(Eddy Fan etal., Liberation from Mechanical Ventilation in Critically ill adults, An official ATS/ACCP Clinical Practice Guideline, 2017)

GUIDELINE

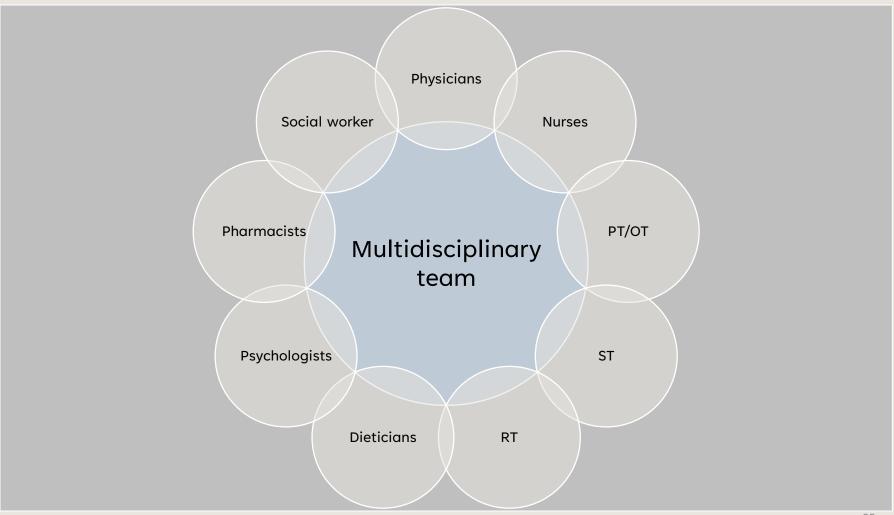
Early Mobility

Sedation Liberation Protocols

Acute hospitalized patients on vent > 24hrs should be managed with protocol that attempt to minimize sedation

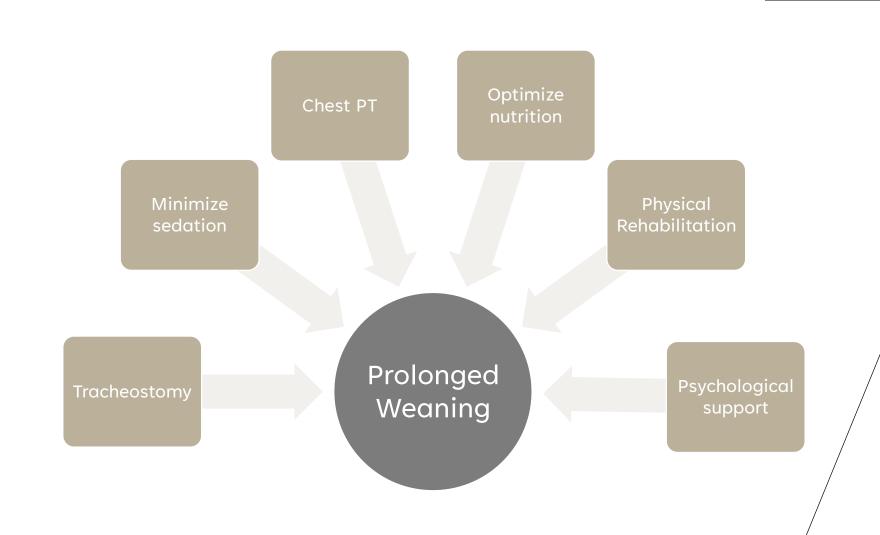
Cuff Leak Test and Systemic Steroids

Recommend cuff leak test for patients meet extubation criteria but considered high risk for postextubation stridor


Recommend administering systemic steroids for at least 4 hrs before extubation for patients who have failed cuff leak test but otherwise being ready for extubation

(Eddy Fan etal., Liberation from Mechanical Ventilation in Critically ill adults, An official ATS/ACCP Clinical Practice Guideline, 2017)

MANAGEMENT STRATEGIES FOR PROLONGED


WEANING (Neeraj M Shah et al., Prolonged weaning from mechanical ventilation; Who, What, When, and How?, 2024)

Also will require
INTENSIVE input
from PT/OT
Dietician
Psychologist, etc.

MANAGEMENT STRATEGIES TO IMPROVE

(NEERAJ M SHAH ET AL., PROLONGED WEANING FROM MECHANICAL VENTILATION; WHO, WHAT, WHEN, AND HOW?, 2024)

Medically complex

Elderly, Socioeconomically disadvantaged

Marginalized individuals

Rely on ventilator weaning facility & skilled nursing homes

Home ventilation

(Tamas Dolinay, et al. Ventilator Weaning in Prolonged Mechanical Ventilation – A Narrative Review, 2024)

Specialized Weaning Unit

Downgrade from ICU/Respiratory Care Units in Acute Care Hospitals

Regional weaning centers

34-60% in specialized weaning unit can be weaned successfully

Maybe cost-effective alternative to ICU

Recommendation of the use of clearly defined protocols

(Tarek Sabry, Difficult Weaning from Mechanical Ventilator, 2017)

Specialized Weaning Unit

Presence of tracheostomy tube

Clinically stable and potential to benefit from rehabilitation

Acceptable nurse/patient ratio

Required supervised pulmonary physician

Qualification of Respiratory therapists

Presence of certain specialists (PT/OT, ST, nutritionist, psychologists)

(Tarek Sabry, Difficult Weaning from Mechanical Ventilator, 2017)

(TAREK SABRY, DIFFICULT WEANING FROM MECHANICAL VENTILATOR, 2017)

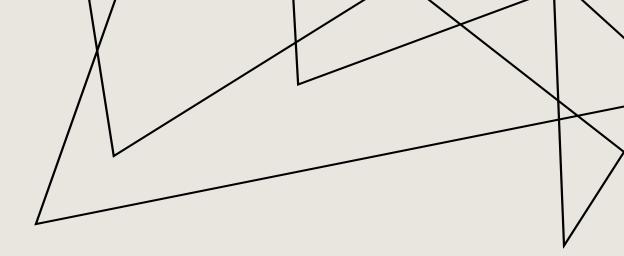
Home Ventilation

Discharged home with ventilator support

Using NIV or MV via tracheostomy

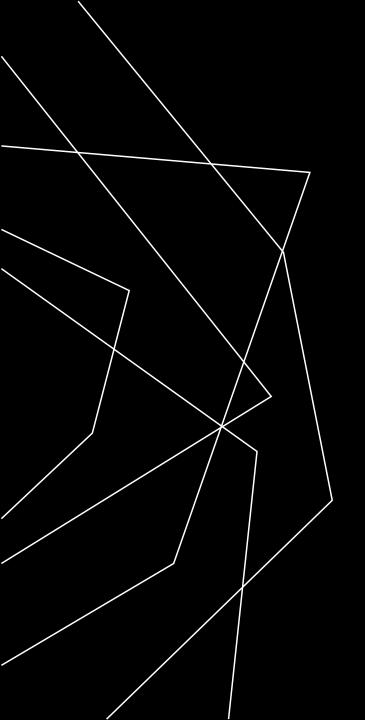
Beneficial for patients with progressive neuromuscular diseases

Terminal Care


Withdrawal of ventilation??

Routine palliative care or ethics consultation

Quality of Communication skill for terminal care


Family and friends' aspects

FINAL TIPS & TAKEAWAYS

- Unless there is an evidence for clearly irreversible disease/factors a
 patient requiring prolonged ventilatory support should not be
 considered "permanently ventilator dependent"; keep seeking!!
- On the other hand, needs evaluation for the benefits and potential harms of continued ventilator care
- Further research is needed who would benefit from ongoing weaning attempts

MAHALO

Kimi Yamasaki, RRT

yamasakh@ah.org

Adventist Health Castle

Islands Skill Nursing & Rehabilitation

