


# BASIC NEONATAL MECHANICAL VENTILATION



RT ALLELIEH



# LEARNING CONTENT

1

Indication and how we  
ventilate

2

Basic understanding of  
MV Parameters

3

Understanding different  
mode of Ventilation

4

Challenges and  
Troubleshooting

5

Simple Waveform, loops  
and Pulmonary mechanics

# What are we trying to achieve during mechanical ventilation

## Oxygenation

### What it is:

- Enhancing oxygen delivery to tissues via the lungs and bloodstream.

### How to improve oxygenation:

- Increase **FiO<sub>2</sub>** (fraction of inspired oxygen).
- Increase **MAP** to recruit alveoli.
- Use **PEEP** to prevent alveolar collapse.
- Optimize **surfactant therapy** and **positioning** (prone or midline).
- Minimize **oxygen toxicity** by titrating **FiO<sub>2</sub>** to target **SpO<sub>2</sub>** range.

### Monitoring tools:

- **Pulse oximetry** (**SpO<sub>2</sub>**).
- **Blood gases** for **PaO<sub>2</sub>** and oxygenation index.

## Target an Open Lung Strategy

### What it is:

- Removal of carbon dioxide (CO<sub>2</sub>) from the lungs via exhalation.

### Why it matters:

- CO<sub>2</sub> buildup (hypercapnia) can cause acidosis, apnea, and brain injury.
- Too little CO<sub>2</sub> (hypocapnia) can reduce cerebral blood flow and cause IVH or PVL.

### How to improve CO<sub>2</sub> elimination:

- Increase **tidal volume** (within safe limits).
- Increase **respiratory rate** (more breaths = more CO<sub>2</sub> cleared).
- Ensure **good lung compliance** (positioning, surfactant, gentle ventilation).
- Minimize **dead space** in circuits.

# Why the Neonatal Lung Is So Dynamic

## Transition from Fluid to Air

- At birth, lungs shift from fluid-filled to air-filled structures.
- First breaths require high pressure (~30–40 cmH<sub>2</sub>O) to recruit alveoli.
- Surfactant production ramps up postnatally, altering compliance dramatically.

| Timeframe | Compliance                                 | Resistance                       |
|-----------|--------------------------------------------|----------------------------------|
| Birth     | ↓ (stiff lungs)                            | ↑ (fluid-filled, narrow airways) |
| Day 1–3   | ↑ (post-surfactant)                        | ↓ (airway clearance begins)      |
| Day 4–7   | Variable (depends on disease, ventilation) | May ↑ in BPD, MAS                |

## Rapid Changes in Compliance & Resistance

- These shifts affect tidal volume delivery, gas exchange, and ventilator settings daily.
- **D:** Dead space ↑
- **Y:** Yielding chest wall
- **N:** New surfactant production
- **A:** Apnea-prone control centers
- **M:** Minute-to-minute compliance shifts
- **I:** Immature alveolar structure
- **C:** Constant ventilator reassessment

# Neonatal Respiratory Physiology

## Compliance

- *Definition:* How easily the lungs expand
- *Category:* Elastic property

## Resistance

- *Definition:* How much opposition the airways present to airflow
- *Category:* Resistive property

## Time Constant ( $\tau$ )

- *Definition:* Time needed for lungs to fill/empty ~63%
- *Formula:* **Compliance × Resistance**
- *Category:* Dynamic parameter (influences breath timing)

- “C-R-T = Choose Right Timing”
- C: Compliance guides **pressure and VT**
- R: Resistance affects **flow and Te**
- T: Time constant tailors rate and I:E ratio, **Ti**

- **Short  $\tau$**  → fast volume change → **short Ti, high rate**
- **Long  $\tau$**  → slow volume change → **longer Te, lower rate**
- Always match **Ti and Te to  $\tau$**  to avoid **incomplete inspiration or expiration**

| Disease                                  | Compliance            | Resistance      | Time Constant ( $\tau$ ) | Ventilation Strategy                                                               |
|------------------------------------------|-----------------------|-----------------|--------------------------|------------------------------------------------------------------------------------|
| RDS (Respiratory Distress Syndrome)      | ↓ (stiff lungs)       | Normal or ↓     | Short $\tau$             | Use <b>short Ti, higher rate, adequate PEEP</b> for recruitment                    |
| MAS (Meconium Aspiration Syndrome)       | Variable              | ↑ (obstructive) | Long $\tau$              | Use <b>longer Te, lower rate</b> , avoid air trapping; consider <b>HFOV</b>        |
| BPD (Bronchopulmonary Dysplasia)         | ↓ or variable         | ↑               | Long $\tau$              | Use <b>longer Te, moderate rate, volume-targeted modes</b> to avoid VILI           |
| CDH (Congenital Diaphragmatic Hernia)    | ↓ (hypoplastic lungs) | ↑               | Long $\tau$              | Use <b>gentle ventilation, low VT, longer Te</b> , consider <b>HFOV or VG</b>      |
| TTN (Transient Tachypnea of the Newborn) | Normal or ↑           | Normal          | Normal $\tau$            | Use <b>standard Ti/Te</b> , monitor for spontaneous improvement                    |
| Apnea of Prematurity                     | Normal                | Normal          | Normal $\tau$            | Use <b>PSV or SIMV</b> , support spontaneous breathing with minimal settings       |
| Pneumothorax / PIE                       | ↓                     | ↑               | Long $\tau$              | Use <b>minimal pressures, long Te</b> , avoid overdistension; consider <b>HFOV</b> |

# Principles of Neonatal Ventilation

# Neonatal Ventilation: Core Principles

## Avoid Hyperoxic Injury

- Titrate  $\text{FiO}_2$  to maintain safe  $\text{SpO}_2$  targets (90–95%)
- Use blended oxygen and pulse oximetry alarms
- Minimize exposure to high  $\text{FiO}_2$ , especially in ELBW

Kaltsogianni et al., *Front Pediatr*, 2023 –

## Individualized Care

Tailor settings to **gestational age**, lung pathology, and disease progression.

## Prevent Air Trapping & Desynchrony

- Ensure adequate expiratory time (TE), especially in obstructive disease
- Use synchronized modes (SIMV, PSV, NSIMV) to reduce WOB
- Monitor waveforms for breath stacking or missed triggers

Loyola NICU Guidelines –

## Target an Open Lung Strategy

- Use adequate PEEP to maintain functional residual capacity (FRC)
- Recruit alveoli without overdistension
- Monitor chest expansion, oxygenation, and CXR for lung inflation

Dargaville & Keszler, *Pediatric and Neonatal Mechanical Ventilation*, 2013

## Prioritize Airway Management

- Secure ETT position and minimize leaks
- Use Cannulaide or nasal masks for non-invasive modes
- Avoid nasal trauma and monitor for obstruction or malposition

Kaltsogianni et al., *Front Pediatr*, 2023

- “C-R-T = Choose Right Timing”
- C: Compliance guides **pressure and VT**
- R: Resistance affects **flow and Te**
- T: Time constant **tailors rate and I:E ratio, Ti**

## Match Mode to Disease & Mechanics

- Select ventilation mode based on compliance, resistance, and pathology
- Use volume-targeted modes for RDS, HFOV for PIE/CDH, SIMV+PS for BPD
- Adjust Ti, rate, and VT to match disease physiology

Chakkarapani et al., *Int J Pediatr Adolesc Med*, 2020

# VENTILATOR SETTINGS IN THE NICU: 5 FUNDAMENTAL QUESTIONS

## Modality Selection

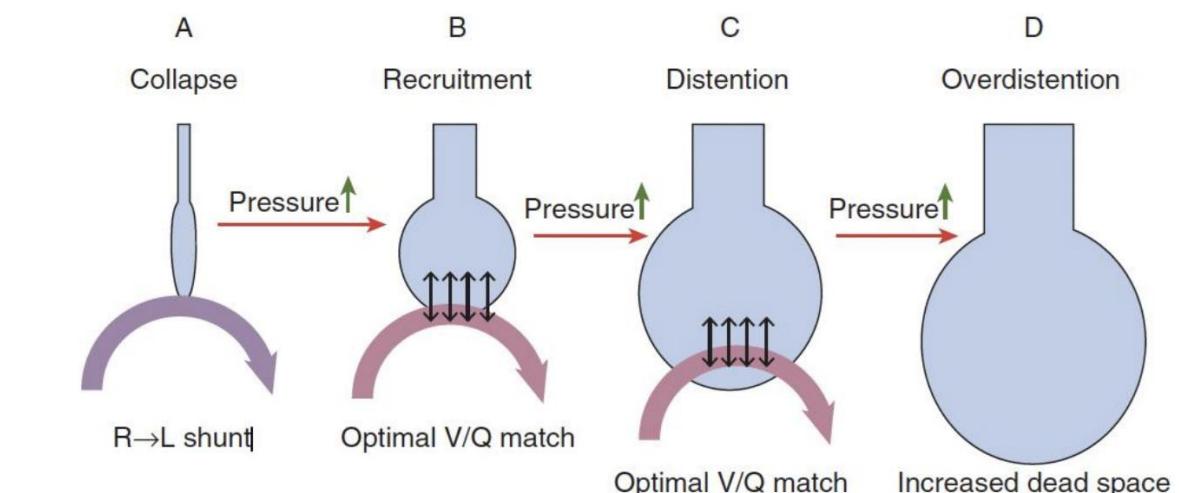
- *What is the right modality for the pathophysiology?*
- → Choose based on disease type: e.g., HFO for homogeneous disease, VG for variable compliance.

## PEEP Optimization

- *What PEEP is appropriate for the lung disease and desired lung volume?*
- → Tailor to disease (e.g., RDS vs BPD) and recruitment goals

## Target an Open Lung Strategy

- *What insp time suits the lung's time constant and baby's pattern?* – compliance/resistance and spontaneous effort.


## PIP Targeting

- *What PIP yields ~4–6+ mL/kg tidal volume (initially)?* → Adjust based on measured VT; reassess with compliance changes.

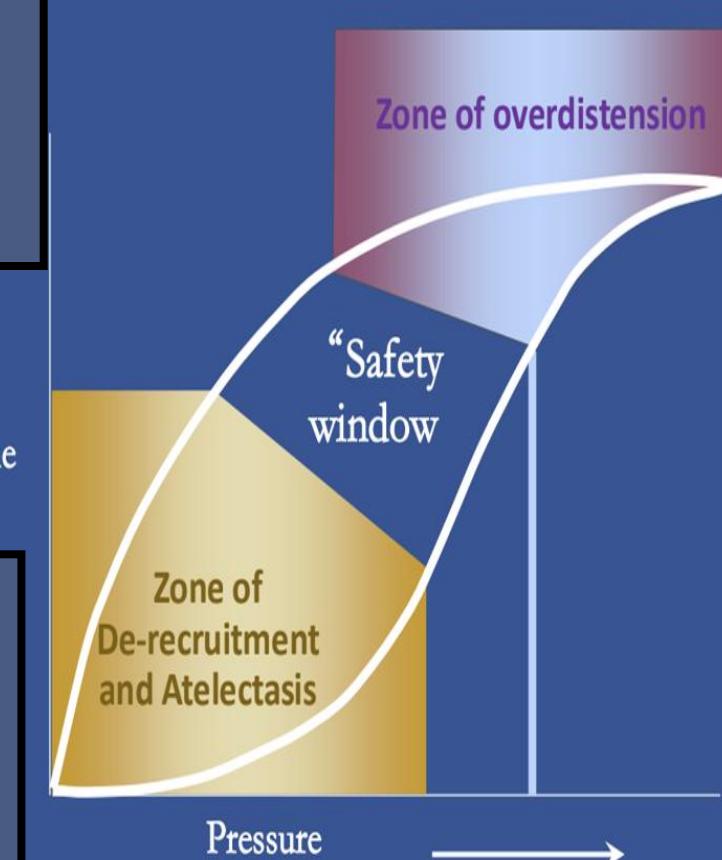
Decreased oxygen requirement with good V/Q match

## Rate Setting

- *What rate ensures adequate minute ventilation and CO<sub>2</sub> clearance?*
- → Balance rate with VT and dead space; consider permissive hypercapnia if needed.



# VENTILATOR-INDUCED LUNG INJURY (VILI): MECHANISMS & TRIGGERS


## Volutrauma (Overdistension)

- Use **volume-targeted ventilation** ( PTV+VG)
- Limit VT to 4–6 mL/kg (preterm)
- Avoid air trapping: ensure adequate expiratory time
- Monitor graphics for overinflation

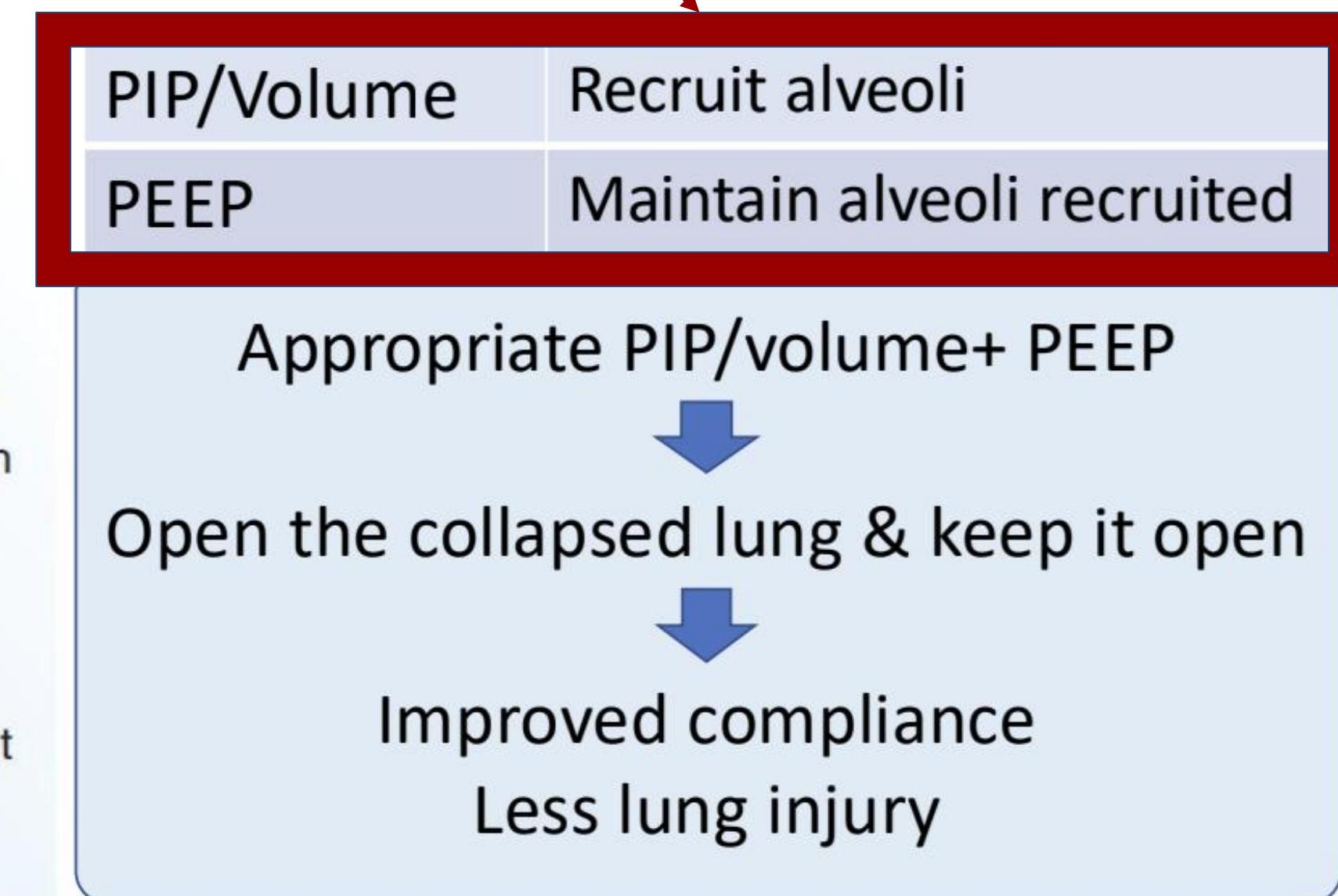
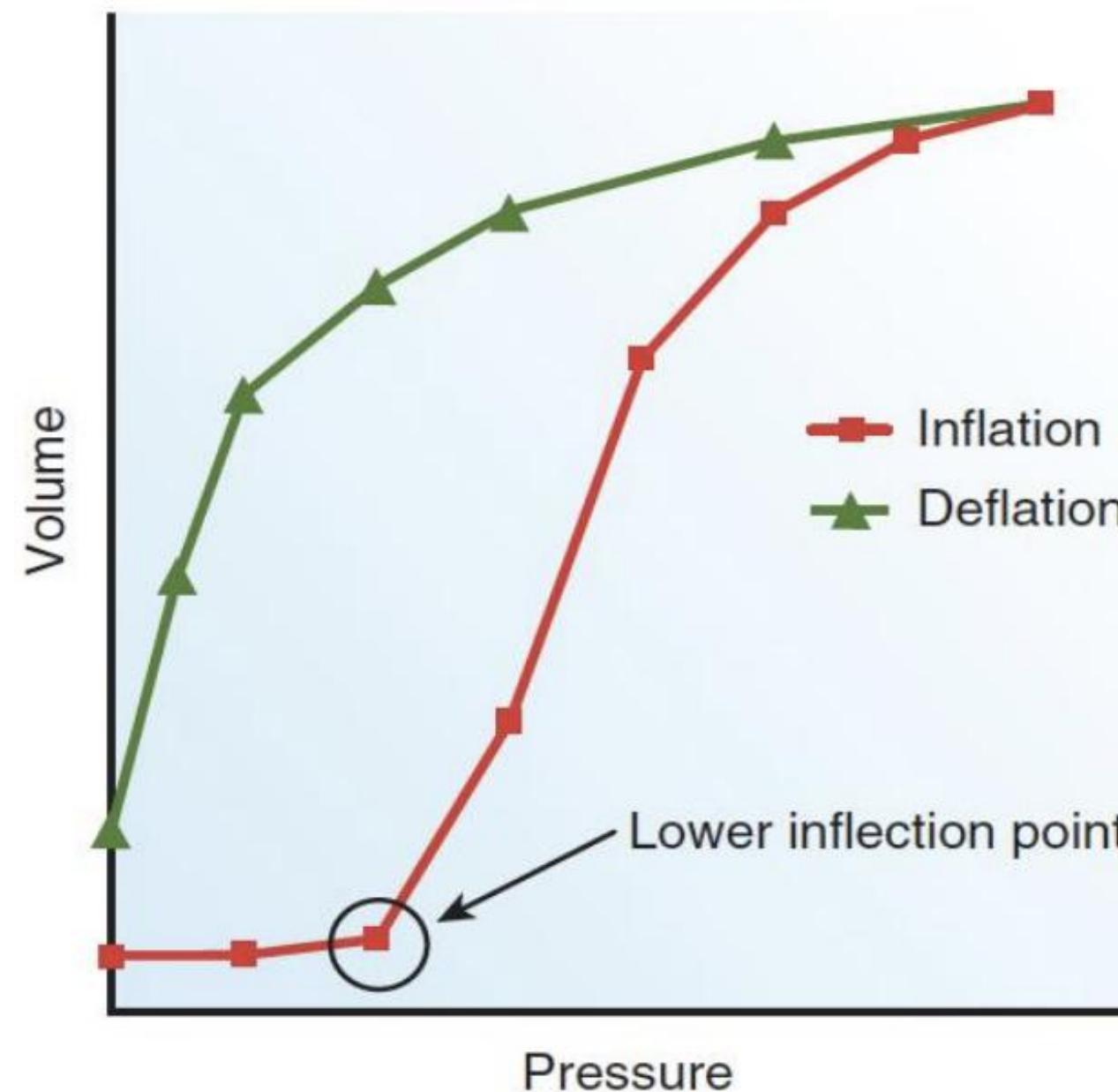
## Atelectrauma (Collapse-Reopen

### Injury)

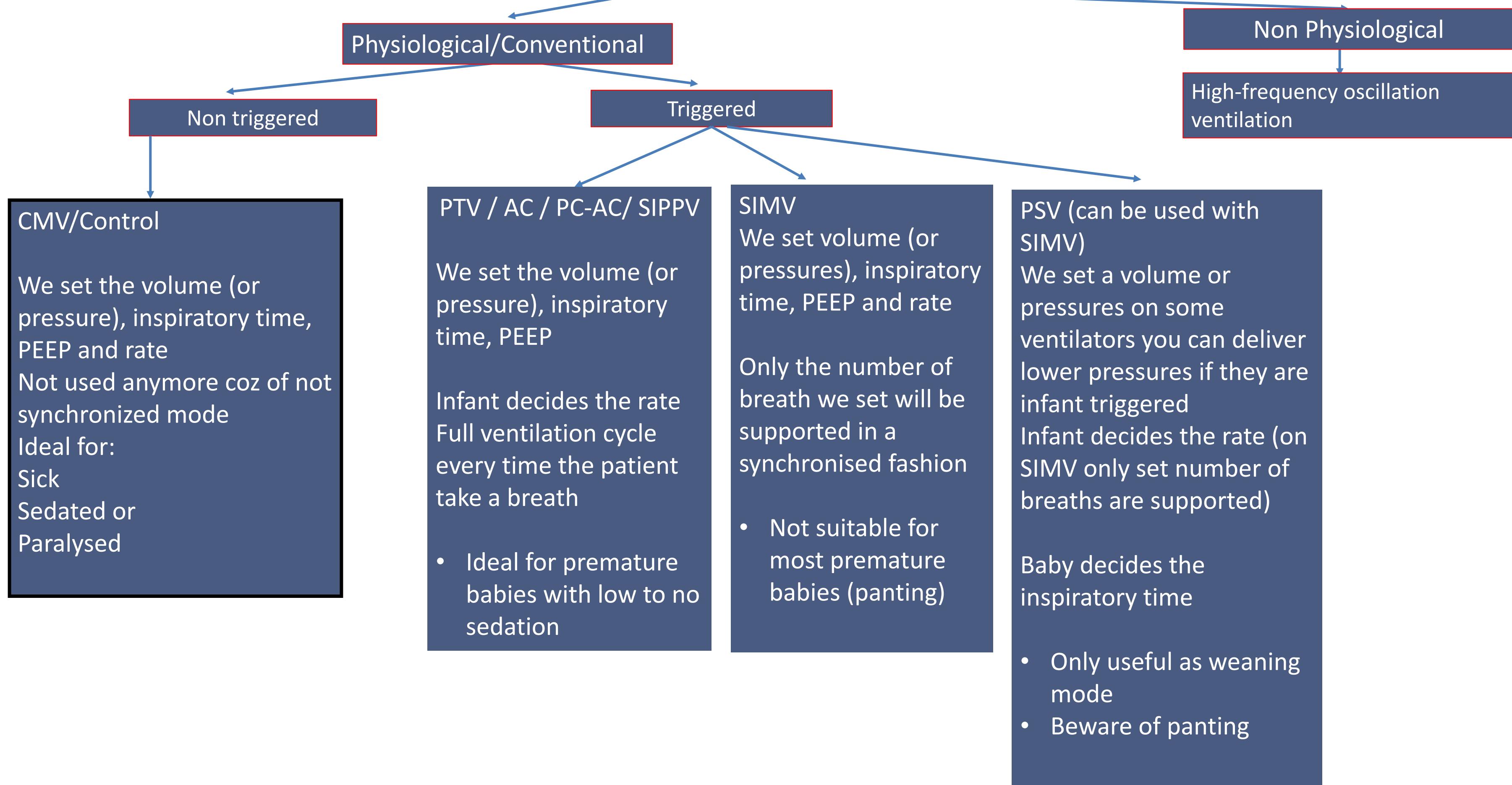
- Maintain alveolar stability with **adequate PEEP**
- Use open lung strategies and gradual recruitment
- Avoid low VT or under-recruitment in surfactant-deficient lung



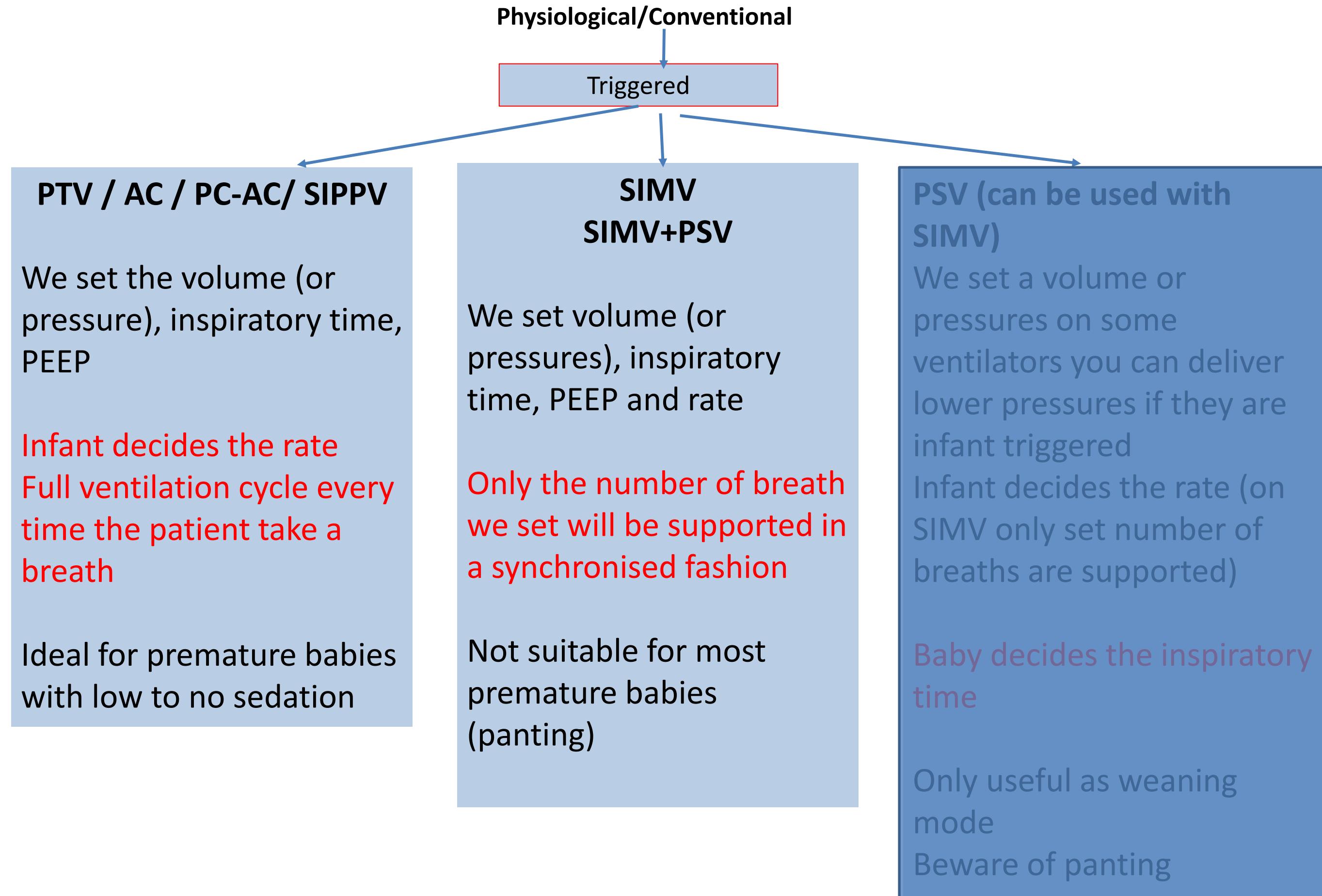
## Barotrauma (Excessive Pressure)



- Avoid unnecessarily high PIP/MAP
- Optimize oxygenation via PEEP and Ti—not just PIP
- Consider **HFOV** for poor compliance or air leak syndromes

## Biotrauma (Inflammatory Cascade)


- Minimize duration of invasive ventilation
- Use **non-invasive support** when feasible (NCPAP, NIPPV), LISA
- Prevent repetitive collapse/stretch cycles
- Consider steroids in selected high-risk cases (DART protocol)

# Target an Open Lung Strategy


## Lung recruitment



# VENTILATOR MODES



# NUH-NICU VENTILATOR MODES



# DISEASE-BASED RECOMMENDATIONS

## RDS

- Use PC-AC/SIPPV + VG initially.
- Wean to PSV + VG or SIMV + PS + VG.
- HFOV: MAP 10–16 cmH<sub>2</sub>O, 10–15 Hz.

## MAS

- PC-AC/SIPPV + VG → SIMV + VG.
- Lower RR, longer Ti to avoid air trapping.
- HFOV: 6–9 Hz; HFJV: 240–360 bpm

## CDH

- PC-AC with low PIP (<25 cmH<sub>2</sub>O), low VT.
- HFOV: MAP 10–13 cmH<sub>2</sub>O, 10 Hz.

## BPD/CLD

- SIMV + PS ± VG.
- VT: 6–12 mL/kg; low RR, long Ti.
- HFOV for exacerbations.

## PIE

- HFJV preferred; HFOV with low frequency (5–6 Hz).
- Minimize Ti and PIP; lateral positioning or selective intubation.

- Volume-targeted ventilation is now standard for lung protection.
- Synchronization improves outcomes; PSV offers physiological support.
- HFV is valuable in specific pathologies but requires careful titration.
- Disease-specific strategies optimize outcomes and minimize harm.

# Mode of ventilation (ETT)

- **NUH NICU mode of preference**

## PTV / PTV+ VG

- Preferred Mode of ventilation for ALL intubated babies <35Weeks

## SIMV only

- For term TTNB as an option if severely hypocarbic due respiratory alkalosis

## SIMV +PSV

- Weaning or supportive for Term CLD/severe BPD/ growing Peds patient
- Growing babies with Evolving BPD

# VENTILATOR MODES

## SIMV

- Delivers a set number of synchronized mandatory breaths. Spontaneous breaths are unsupported unless **Pressure Support (PS)** is added.
- Transitional mode for neonates needing **moderate support**.
- **Pathology:** RDS, pneumonia, evolving BPD, post-op recovery.
- **GA:** All gestational ages; common in **VLBW/ELBW**

## SIMV+PSV

### SIMV + PS (Pressure Support on top of SIMV)

- Gives a set number of synchronized mandatory breaths.
- Adds **pressure support** to spontaneous breaths to help overcome ETT resistance and reduce work of breathing.
- Great for **weaning**, improving synchrony, and prepping for **extubation**.
- **Pathology:** RDS, Sepsis-related lung disease, Early evolving BPD
- **GA:** Used across all gestational ages. Especially useful for **weaning/extubation prep**.

# VENTILATOR MODES

## PTV

- Infant-triggered breaths receive full support with **set pressure (all breaths are supported)**
- Includes a **back-up rate** to ensure safety during apnea or weak effort.
- For infants with **intact respiratory drive**. Enhances synchrony and reduces ventilator-patient mismatch.
- **Pathology**: Moderate RDS, Stable infants with good effort, Improves comfort and stability in synchrony-responsive cases
- **GA**: Preterm >27–28 weeks and term infants.
- **Less effective in apneic ELBW** unless back-up rate is robust/high.

# VOLUME TARGETED/GUARANTEE

## PTV+VG

(also called **PC-AC + VG**, or **Volume Guarantee in AC mode**)

Infant-triggered breaths with auto-adjusted **PIP** to deliver set **VT**. Backup rate ensures safety.

**Best for:** Preterms  $\geq 26-28$ w GA with consistent effort Stabilized RDS, weaning/extubation prep

### Pros:

- ✓ Excellent synchrony
- ✓ Limits volutrauma (PIP capped)
- ✓  $\downarrow$  Work of breathing

**Evidence:**  $\downarrow$  BPD, IVH, pneumothorax, ventilation time (*Cochrane + RCTs*)

### Limits:

Poor fit for apneic ELBW  $< 26$ w (must increase back up rate)

⚠ VT accuracy  $\downarrow$  with large ETT leaks

## SIMV+VG

• **How it works:** Synchronized mandatory breaths with **volume targeting**

• Spontaneous breaths: **unsupported or PS-assisted**

• Backup rate ensures safety during apnea

### Advantages:

- ✓ Guaranteed breaths = safety
- ✓ Volume targeting  $\downarrow$  volutrauma
- ✓ Synchrony improves comfort & gas exchange

• ✓ Common initial mode in VLBW

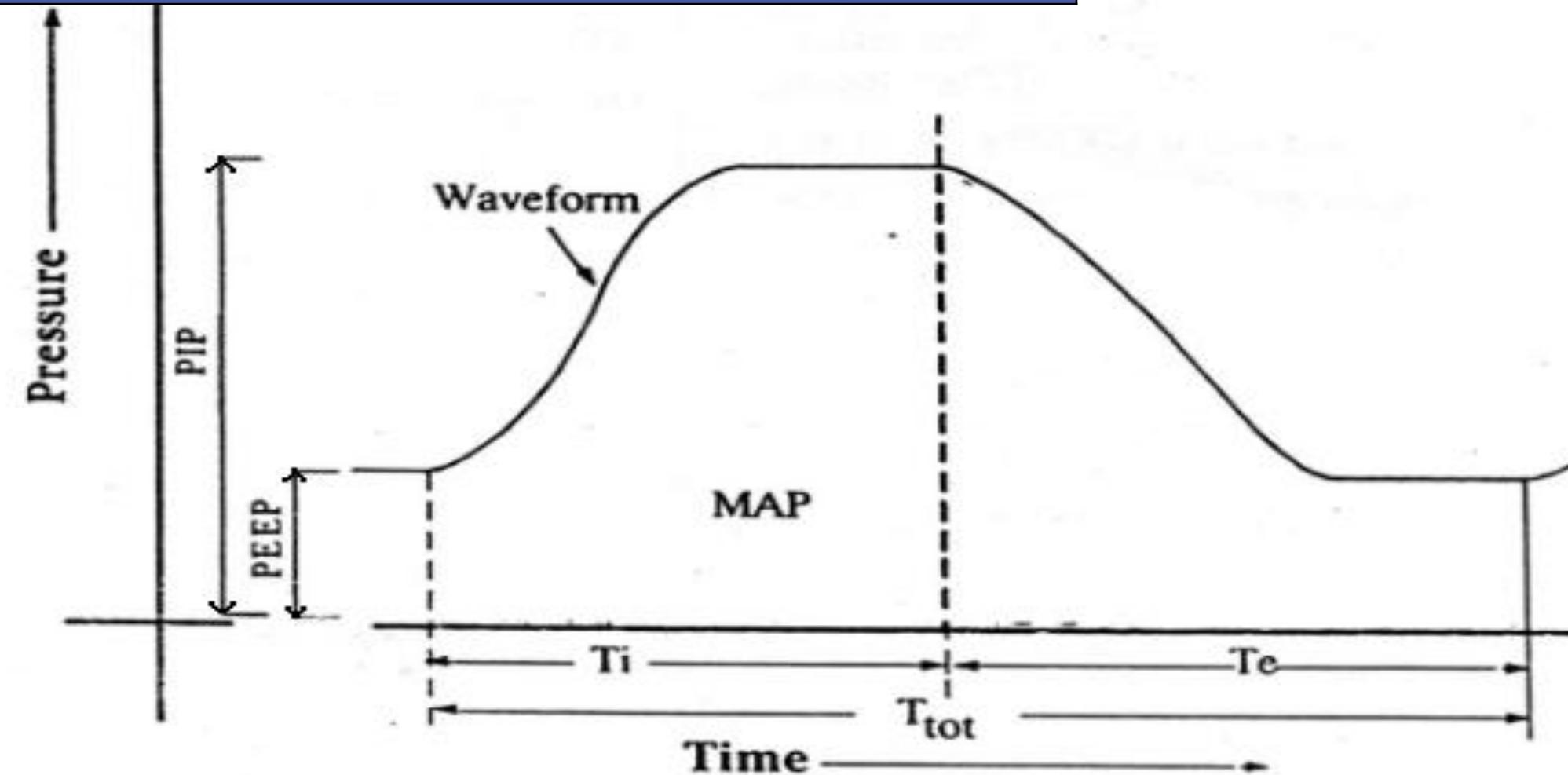
### Limitations:

- ⚠  $\uparrow$  Work of breathing if no PS
- ⚠ Prolonged weaning if rate not tapered

# Early volume guarantee

- Applied to all types of mode (PTV, SIMV or HFOV)
- Volume is being set /controlled (avoiding volutrauma) while Pressures (PIP) varies depending on lung compliance change; PMAX limit is being set accordingly to avoid over shooting of PIP (barotrauma)

**Table 2** Recommended initial tidal volume (VT) and peak inflation pressure (PIP) settings for different clinical situations and patient conditions. Individual patients may need slightly smaller or larger VT. The stated PIP is a reasonable starting point based on underlying physiology and clinical experience, not published literature


| Condition                         | Initial $V_T$ | Initial PIP limit |
|-----------------------------------|---------------|-------------------|
| Term, late preterm, normal lungs  | 4–4.5 mL/kg   | 18 cm $H_2O$      |
| Preterm RDS 1250–2500 g           | 4–4.5 mL/kg   | 26 cm $H_2O$      |
| Preterm RDS 700–1249 g            | 4.5–5 mL/kg   | 24 cm $H_2O$      |
| Preterm RDS <700 g                | 5.5–6 mL/kg   | 24 cm $H_2O$      |
| Preterm evolving BPD, 3 weeks old | 5.5–6.5 mL/kg | 26 cm $H_2O$      |
| Term MAS with classic CXR*        | 5.5–6 mL/kg   | 28 cm $H_2O$      |
| Term MAS with white-out CXR       | 4.5–5 mL/kg   | 30 cm $H_2O$      |
| Term CDH                          | 4–4.5 mL/kg   | 24 cm $H_2O$      |
| Established severe BPD            | 7–12 mL/kg    | 30 cm $H_2O$      |

| Mode                                                          | Description                                                | Key Features                                           | Use Case                                            |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| <b>CMV (Continuous Mandatory Ventilation)</b>                 | Delivers set breaths regardless of patient effort          | Fixed rate and pressure                                | Rarely used alone; may be backup in apneic neonates |
| <b>SIMV (Synchronized Intermittent Mandatory Ventilation)</b> | Synchronizes mandatory breaths with spontaneous efforts    | Allows spontaneous breathing between mandatory breaths | Useful for weaning                                  |
| <b>SIPPV / PTV / AC (Assist Control)</b>                      | Supports every spontaneous breath with a mechanical breath | Backup rate if no spontaneous effort                   | Common in initial support                           |
| <b>PSV (Pressure Support Ventilation)</b>                     | Supports spontaneous breaths with pressure, no set rate    | Infant controls rate and inspiratory time              | Often used in weaning                               |
| <b>VC / VG (Volume Control / Volume Guarantee)</b>            | Delivers target tidal volume with variable pressure        | PIP adjusts to achieve set VT                          | Reduces volutrauma risk                             |

# Conventional Ventilator Settings

| Settings Parameter | Concept                                                                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEEP               | “This is the baseline pressure that stays in the lungs at the end of exhalation. It keeps alveoli open.”                                                                                                                       |
| PIP                | “This is the peak pressure during inspiration. It pushes air into the lungs.”                                                                                                                                                  |
| Ti                 | “This is how long the ventilator holds the breath in. Too short, and you don’t fill the lungs. Too long, and you risk air trapping.”                                                                                           |
| Te                 | “This is the time for the lungs to empty. If it’s too short, air gets trapped.”                                                                                                                                                |
| Ttot               | “This is the full cycle time—Ti plus Te. It determines the respiratory rate.”                                                                                                                                                  |
| MAP                | “This is the average pressure over the whole breath. It’s key for oxygenation.”<br>MAP – <u>net outcome of all parameters</u> except Fio2 and RR; true measure of average pressure; should be maintained between 8-12 cm H20 . |

| Element          | Description                                                                 |
|------------------|-----------------------------------------------------------------------------|
| PEEP             | Baseline pressure maintained during expiration to prevent alveolar collapse |
| PIP              | Peak pressure during inspiration—drives tidal volume                        |
| MAP              | Mean Airway Pressure—average pressure over the cycle, key for oxygenation   |
| Ti               | Inspiratory Time—duration of pressure rise and hold                         |
| Te               | Expiratory Time—duration of pressure return to baseline                     |
| T <sub>tot</sub> | Total Cycle Time = Ti + Te                                                  |



“This waveform shows how pressure changes over time during each breath the ventilator gives. It helps us understand how much pressure the lungs are exposed to, and for how long.”

| Parameter                         | Definition                                                                | Clinical Relevance                                   |
|-----------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|
| <b>Mode</b>                       | The control strategy used to deliver breaths (e.g., CMV, SIMV, PSV, HFOV) | Determines breath type, trigger, and cycling         |
| <b>FiO<sub>2</sub></b>            | Fraction of inspired oxygen (0.21–1.0)                                    | Adjusted to maintain target SpO <sub>2</sub>         |
| <b>PEEP</b>                       | Positive End-Expiratory Pressure                                          | Prevents alveolar collapse, improves oxygenation     |
| <b>PIP</b>                        | Peak Inspiratory Pressure                                                 | Drives tidal volume; excessive PIP risks barotrauma  |
| <b>ΔP</b>                         | Pressure difference (PIP – PEEP)                                          | Determines delivered VT in pressure modes            |
| <b>VT (Tidal Volume)</b>          | Volume of gas delivered per breath (mL/kg)                                | Targeted in volume modes; adjusted for disease state |
| <b>Rate (f)</b>                   | Number of breaths per minute                                              | Affects minute ventilation and PaCO <sub>2</sub>     |
| <b>Ti (Inspiratory Time)</b>      | Duration of inspiration (sec)                                             | Must match lung time constant for full VT delivery   |
| <b>Te (Expiratory Time)</b>       | Duration of expiration (sec)                                              | Must be long enough to prevent air trapping          |
| <b>I:E Ratio</b>                  | Ratio of inspiratory to expiratory time                                   | Typically 1:2; adjusted for resistance/compliance    |
| <b>MAP (Mean Airway Pressure)</b> | Average pressure across the respiratory cycle                             | Key determinant of oxygenation                       |
| <b>Trigger Sensitivity</b>        | Effort required to initiate a breath (flow or pressure)                   | Affects synchrony and WOB                            |
| <b>Rise Time</b>                  | Time taken to reach PIP during inspiration                                | Impacts comfort and synchrony in pressure modes      |
| <b>Cycle Type</b>                 | How the ventilator ends inspiration (time, flow, volume)                  | Defines breath termination logic                     |
| <b>Bias Flow</b>                  | Continuous flow in the circuit (common in HFOV)                           | Helps maintain circuit pressure and detect triggers  |
| <b>Leak Compensation</b>          | Adjusts for volume loss due to leaks                                      | Important in NIV and uncuffed ETTs                   |
| <b>Backup Rate</b>                | Minimum rate delivered if spontaneous effort fails                        | Ensures safety in case of apnea                      |

# Understanding Vent settings

## Peak Inspiratory Pressure (PIP)

Neonate with normal lung requires PIP of about 12 cm H<sub>2</sub>O for ventilation.

Appropriate to start with PIP of 18-20 cm H<sub>2</sub>O for mechanical ventilation.

Primary variable determining tidal volume.

High PIP – Barotrauma.

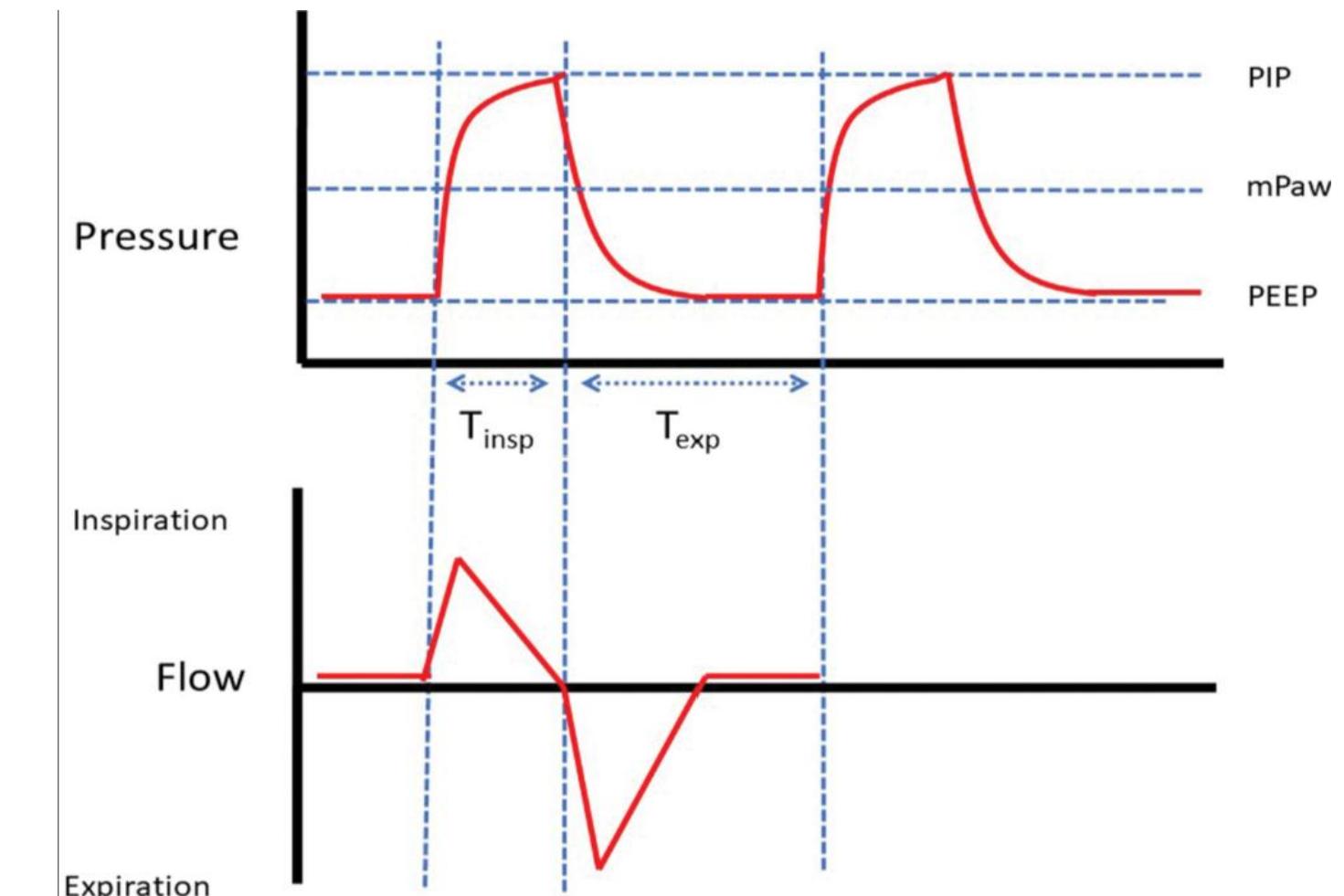
Inspired oxygen concentration

Fraction of O<sub>2</sub> in inspired air-oxygen mixture

Regulated by Vent blenders system

Fio<sub>2</sub> – kept at a minimum level to maintain PaO<sub>2</sub> of 50-80 mm Hg.

Initial Fio<sub>2</sub> – Term 21% - Prem 30%


## Positive End Expiratory Pressure (PEEP)

Most effective parameter that increases MAP.

Has opposite effects on CO<sub>2</sub> elimination.

PEEP range of 4-8 cm H<sub>2</sub>O is safe and effective.

Excess PEEP decreases compliance, increase pulmonary vascular resistance.



# Understanding Vent settings

## Respiratory Rate (RR)

Main determinant of minute ventilation.  
Rate to be kept within normal range or higher than normal rate, especially at the start of mechanical ventilation.

**Inspiratory Time (Ti)** is the duration of the inspiratory phase during mechanical ventilation. It determines how long gas is delivered into the lungs during each breath.

| Neonate Type                                | Typical Ti Range | Clinical Notes                                                               |
|---------------------------------------------|------------------|------------------------------------------------------------------------------|
| <b>Extremely Preterm (&lt;28w)</b>          | 0.25–0.35 sec    | Short time constants; avoid gas trapping; may need longer Ti for stiff lungs |
| <b>Very Preterm (28–32w)</b>                | 0.30–0.35 sec    | Balance between adequate VT delivery and avoiding breath stacking            |
| <b>Moderate to Late Preterm (32–37w)</b>    | 0.35–0.40 sec    | Often tolerate slightly longer Ti; monitor for asynchrony                    |
| <b>Term Neonate (<math>\geq 37w</math>)</b> | 0.40–0.50 sec    | Longer Ti may improve oxygenation in stiff lungs (e.g., MAS, pneumonia)      |
| <b>BPD/CLD</b>                              | 0.5-0.8sec       | Longer Ti may improve oxygenation in stiff lungs                             |

# Ventilator Parameters

| Parameter                                            | Typical Range            | Clinical Notes                                                   |
|------------------------------------------------------|--------------------------|------------------------------------------------------------------|
| <b>PIP (Peak Inspiratory Pressure)</b>               | 16–25 cmH <sub>2</sub> O | Adjust to achieve adequate chest rise and VT (~4–6 mL/kg)        |
| <b>PEEP (Positive End-Expiratory Pressure)</b>       | 4–6 cmH <sub>2</sub> O   | Prevents alveolar collapse; higher in severe RDS                 |
| <b>RR (Respiratory Rate)</b>                         | 40–60 bpm                | Higher in neonates; adjust based on PaCO <sub>2</sub>            |
| <b>Ti (Inspiratory Time)</b>                         | 0.3–0.5 sec              | Shorter in preterms; avoid air trapping                          |
| <b>FiO<sub>2</sub> (Fraction of Inspired Oxygen)</b> | 0.21–1.0                 | Titrate to maintain SpO <sub>2</sub> 90–95% (or per unit target) |
| <b>MAP (Mean Airway Pressure)</b>                    | 8–12 cmH <sub>2</sub> O  | Key determinant of oxygenation, esp. in HFOV                     |

# Ventilation Strategy Comparison: Initial RDS vs Established BPD

| Feature / Focus               | Initial RDS                                       | Established BPD                                                    |
|-------------------------------|---------------------------------------------------|--------------------------------------------------------------------|
| <b>Pathophysiology</b>        | Surfactant deficiency → ↓ compliance, atelectasis | Heterogeneous lung disease: fibrosis, hyperinflation, ↑ resistance |
| <b>Primary Goal</b>           | Recruit alveoli, optimize oxygenation             | Minimize air trapping, support ventilation                         |
| <b>Compliance</b>             | ↓ (uniformly)                                     | ↓ and variable (patchy)                                            |
| <b>Resistance</b>             | Normal or mildly ↑                                | Markedly ↑                                                         |
| <b>Time Constants</b>         | Short                                             | Long                                                               |
| <b>Ventilator Mode</b>        | SIMV + VG / PC-VG / HFOV                          | SIMV + VG / PC-VG / NAVA / PSV                                     |
| <b>VT (Tidal Volume)</b>      | 4–6 mL/kg                                         | 6–10 mL/kg                                                         |
| <b>PEEP</b>                   | 5–6 cm H <sub>2</sub> O                           | 6–8 cm H <sub>2</sub> O                                            |
| <b>Rate</b>                   | 40–60 bpm                                         | 25–35 bpm                                                          |
| <b>Ti (Inspiratory Time)</b>  | 0.3–0.4 sec                                       | 0.4–0.5 sec                                                        |
| <b>Te (Expiratory Time)</b>   | Short (0.4–0.6 sec)                               | Long (≥0.6–0.8 sec)                                                |
| <b>FiO<sub>2</sub> Target</b> | SpO <sub>2</sub> 90–95%                           | SpO <sub>2</sub> 90–95% (avoid hyperoxia)                          |
| <b>Graphics Focus</b>         | Lung recruitment, avoiding overdistension         | Detecting air trapping, flow limitation                            |
| <b>Adjuncts</b>               | Early surfactant, HFOV if severe                  | Steroids (DART), bronchodilators (selective)                       |
| <b>Extubation Strategy</b>    | CPAP or NIPPV                                     | NIPPV, CPAP, gradual wean                                          |

# WHEN TO ESCALATE AND VENTILATE

## Indications for CPAP from Hoodbox/O2 therapy/RA

- **Low FRC conditions:** RDS, TTN, pulmonary edema, PDA
- **Recurrent apneas:** Especially in preterm infants
- **Weaning:** From mechanical ventilation
- **Airway closure diseases:** BPD, bronchiolitis, tracheomalacia
- **Short trial:** In meconium aspiration syndrome

## Failure of CPAP – Indications for Intubation & Mechanical Ventilation

- **PaO<sub>2</sub> < 50 mmHg** on 60–80% FiO<sub>2</sub>
- **PaCO<sub>2</sub> > 60 mmHg**
- **Severe distress:** Marked retractions, frequent apneas, bradycardia
- **Intractable acidosis**
- **Cardiovascular collapse**
- **Neuromuscular compromise**
- **Deep sedation/paralysis**

**Note:** In **VLBW infants with RDS**, intubate and administer surfactant if FIO<sub>2</sub> >30%

# WHEN TO INTUBATE

## Intubation & Surfactant Guidelines – Neonatal RDS

**GA 23–27 weeks:** → Intubate in delivery room → Administer surfactant early (ideally on NICU arrival)

**GA >27 weeks with RDS:** → Surfactant given when clinical criteria are met → Early rescue surfactant reduces mortality, CLD, and air leaks (ETT MV or LISA NSIMV)

**Within first 72 hours of life**, surfactant is indicated if:

- Progressive respiratory distress
- FiO<sub>2</sub> > 0.30
- Hypoxia/hypercarbia on blood gases
- Radiologic evidence of moderate/severe RDS

# NUH-NICU Standard Initial setting parameters

## Preterm ETT

| PIP   | PEEP | TI   | RR    | Rise time | Trigger sensitivity |
|-------|------|------|-------|-----------|---------------------|
| 20-25 | 5-6  | 0.35 | 40-60 | 0.1       | 0.2-0.4             |

Titration depending on patient vent requirement (VG might be activated early)

## Term ETT

| PIP   | PEEP | TI  | RR | Rise time | Trigger sensitivity |
|-------|------|-----|----|-----------|---------------------|
| 18-20 | 5    | 0.4 | 40 | 0.1       | 0.4-0.6             |

Titration depending on patient vent requirement (VG might be activated early)

## Extubated Prem and Term (non-invasive modes)

| PIP             | PEEP        | TI            | RR           | Rise time | Trigger sensitivity |
|-----------------|-------------|---------------|--------------|-----------|---------------------|
| 20-25 or higher | 6 or higher | 0.5 or higher | 30 or higher | 0.1       | 100%                |

Titration depending on patient vent requirement

# NONINVASIVE VENTILATOR MODES

## CPAP

- Provides constant distending pressure (PEEP only)
- No breath synchronization or support
- Requires stable spontaneous effort
- Used for mild RDS, apnea of prematurity, post-extubation
- GA:  $\geq 28$  weeks with reliable drive
- Simple, low WOB, but ineffective in weak or apneic infants

## Nasal SIMV

### NSIMV – Nasal Synchronized Intermittent Mandatory Ventilation

Delivers synchronized mandatory breaths via nasal interface

Optional pressure support for spontaneous breaths

Includes backup rate for apnea protection

Used for moderate RDS, variable drive, extubation prep

GA:  $\geq 26$  weeks, especially VLBW/ELBW with inconsistent effort

Improves synchrony, reduces WOB, better CO<sub>2</sub> clearance

# ADVANCED VENTILATOR MODES

## HFOV

**What it is:** Delivers tiny tidal volumes at high rates (5–15 Hz) with active inspiration and expiration.

**How it works:** High **MAP** for oxygenation, **amplitude** for  $\text{CO}_2$  clearance, **frequency** tuned to disease.

**Best used in:** Severe RDS, PIE, CDH, air leak syndromes, poor compliance lungs.

### Advantages:

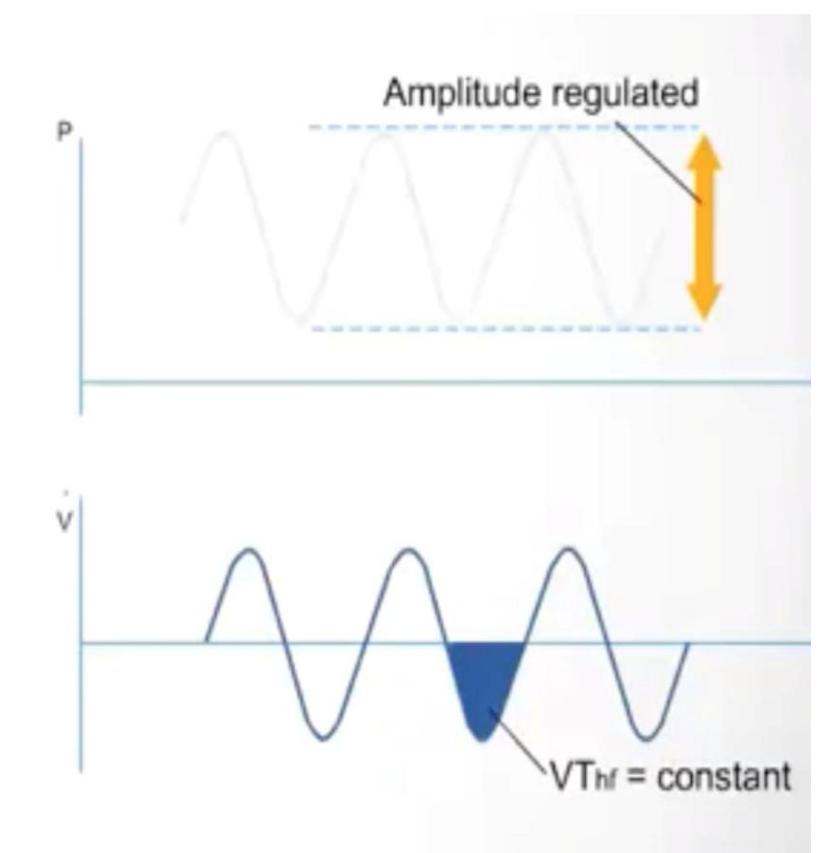
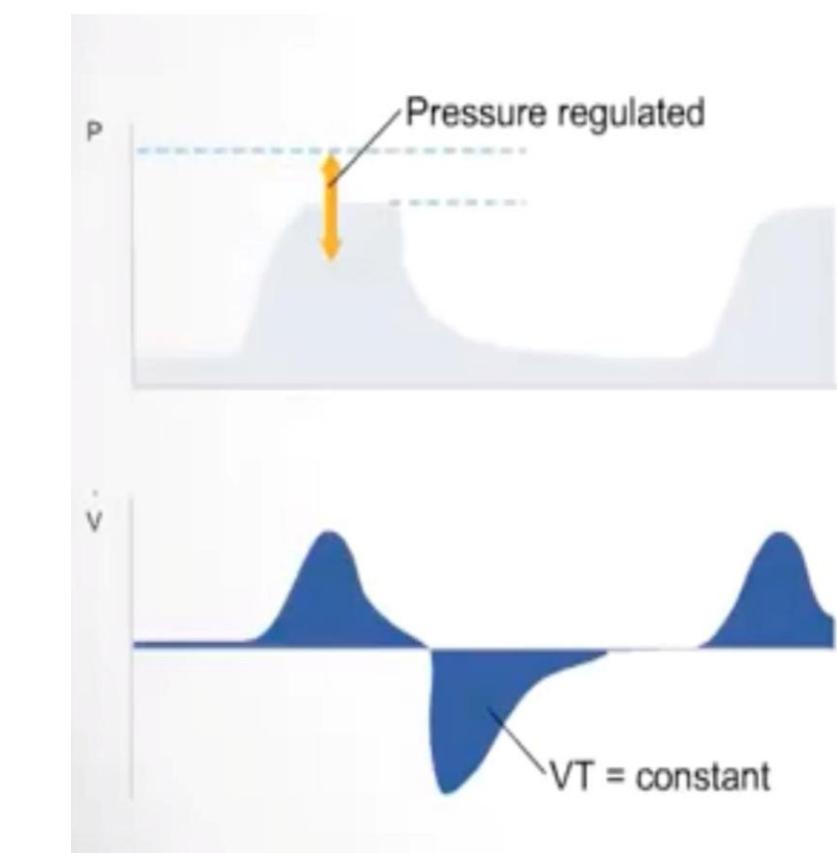
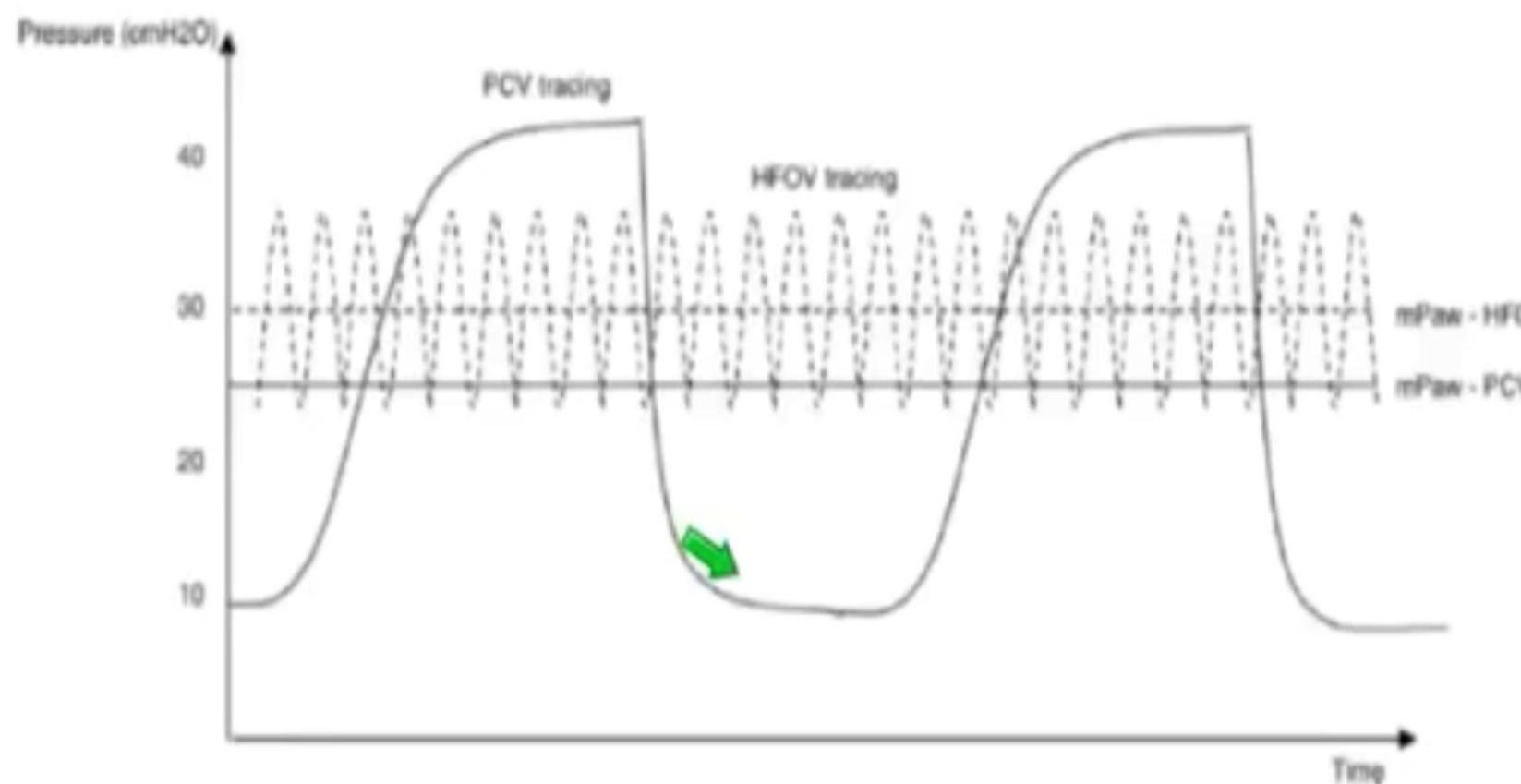
- Precise oxygen/ $\text{CO}_2$  control
- Lung-protective (low VT)
- Effective in stiff lungs

### Limitations:

- ⚠ Risk of overdistension
- ⚠ Requires close monitoring (CXR, gases, chest wiggle)
- ⚠ May impact hemodynamics

## Freq selection

### Diffuse Homogeneous Lung Diseases




Respiratory distress syndrome, Diffuse pneumonia and Bilateral lung hypoplasia.



| HOMOGENEOUS LUNG DISEASES               | HFOV FREQUENCY |
|-----------------------------------------|----------------|
| SEVERE PULMONARY INTERSTITIAL EMPHYSEMA | 5-10           |
| MECONIUM ASPIRATION                     | 6-11           |
| TERM LUNG DISEASE                       | 8-12           |
| CONGENITAL DIAPHRAGMATIC HERNIA         | 10-15          |
| PRETERM HMD (RDS)                       | 12-15          |
| EARLY PIE                               | 12-15          |

PRACTICAL TIP : Suggested HFOV frequency ranges for common neonatal conditions.

# CONVENTIONAL VS HFOV



# Neonatal Ventilation Strategy by Clinical Scenario

(Adapted from Dargaville & Keszler, 2013)

| Situation                       | Examples                   | Pathophysiology                  | Mode             | PEEP        | VT (mL/kg) | Key Considerations                                       |
|---------------------------------|----------------------------|----------------------------------|------------------|-------------|------------|----------------------------------------------------------|
| <b>Apnoea</b>                   | Apnoea of prematurity, RSV | Poor drive, episodic desats      | SIMV             | Low–Medium  | 4–5        | Low rate; lungs often compliant—avoid overdistension     |
| <b>Post-Surgery – General</b>   | Painful incision           | Sedation, pain-limited excursion | (S)IMV           | Medium      | 5–6        | May not trigger if sedated; low VT risks atelectasis     |
| <b>Post-Surgery – Abdominal</b> | NEC, gastroschisis         | ↑ intra-abdominal pressure       | SIMV or AC       | Medium–High | 5–6        | May need HFOV/HFJV if conventional fails                 |
| <b>Post-Surgery – Thoracic</b>  | PDA ligation, lobectomy    | Compliance shifts, air leak risk | SIMV or AC       | Medium      | 4–5        | Adjust VT/PEEP intra-op                                  |
| <b>Diffuse Lung Disease</b>     | RDS, pulmonary oedema      | Poor compliance                  | AC or SIMV       | High        | 4–6        | PEEP recruitment; short Ti for RDS, longer Ti for oedema |
| <b>Localized Lung Disease</b>   | Pneumonia, MAS             | Mixed compliance                 | SIMV ± PSV       | Medium      | 5–6        | Risk of overdistension; MAS needs higher VT              |
| <b>Chronic Lung Disease</b>     | BPD                        | ↑ resistance, ↓ compliance       | SIMV + PSV or AC | Medium–High | 5–7        | Longer TE; prevent flow limitation                       |

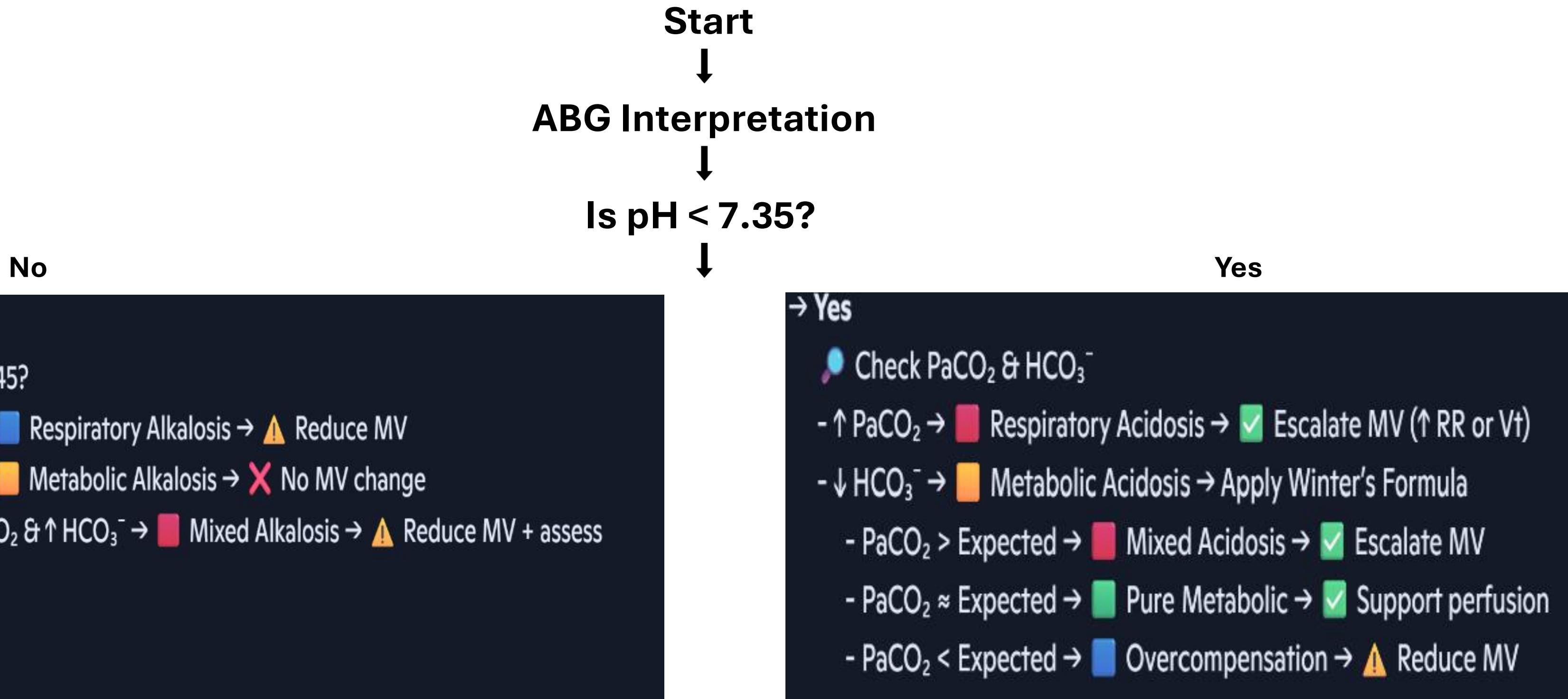
# Neonatal Ventilation Strategy by Clinical Scenario

(Adapted from Dargaville & Keszler, 2013)

| Situation                        | Examples                | Pathophysiology                | Mode             | PEEP       | VT (mL/kg) | Key Considerations                                             |
|----------------------------------|-------------------------|--------------------------------|------------------|------------|------------|----------------------------------------------------------------|
| Pulmonary Hypoplasia             | CDH, prolonged ROM      | Small lungs, high PVR          | SIMV or AC       | Low–Medium | 3–5        | Avoid high PIP/VT; consider HFOV if PIP >25                    |
| Air Leak / Gas Trapping          | PIE, pneumothorax       | Compression, persistent leak   | SIMV or AC       | Medium     | 4–5        | HFJV preferred; HFOV if leak persists                          |
| Pulmonary Insufficiency          | ELBW failing extubation | Immature system                | AC or SIMV + PSV | Medium     | 4–5        | Risk of overdistension once compliant                          |
| PPHN (with lung disease)         | RDS + PPHN              | ↑ PVR, ↓ oxygenation           | SIMV or AC       | Medium     | 4–6        | Tailor PEEP/VT to lung disease                                 |
| PPHN (normal lungs)              | Isolated PPHN           | ↑ PVR only                     | SIMV or AC       | Low        | 4–5        | Avoid hyperventilation                                         |
| Cardiac – L→R Shunt              | PDA, VSD                | Pulmonary overcirculation      | AC               | High       | 5–6        | ↑ CO <sub>2</sub> may reduce shunt                             |
| Cardiac – Vulnerable Circulation | HLHS, PA                | Flow sensitive to pressure     | SIMV             | Low–Medium | 5–7        | Avoid overdistension; modulate CO <sub>2</sub> to control flow |
| Neuromuscular Disease            | Myotonic dystrophy      | Weak muscles, low VT           | AC or SIMV + PSV | Medium     | 4–6        | Support every breath                                           |
| Airway Obstruction – Supra       | Pierre Robin            | Hypoventilation, normal lungs  | SIMV             | Low–Medium | 4–6        | May need positioning or airway adjuncts                        |
| Airway Obstruction – Subglottic  | Tracheomalacia, OA      | Gas trapping, expiratory delay | SIMV             | Variable   | 4–6        | Adjust ETT tip; high PEEP if obstruction persists              |

## Monitoring and Adjustment

- Regularly assess **blood gases**, chest movement, and ventilator graphics.
- Adjust settings based on **lung compliance**, resistance, and clinical response.
- Watch for signs of overdistension or under-ventilation.


# ABG

| Parameter                     | Term Neonate              | Preterm Neonate          | Notes                                                             |
|-------------------------------|---------------------------|--------------------------|-------------------------------------------------------------------|
| pH                            | 7.35–7.45                 | 7.30–7.40                | Accept pH $\geq$ 7.25 in permissive hypercapnia                   |
| PaCO <sub>2</sub>             | 35–45 mmHg (4.6–6.0 kPa)  | 40–55 mmHg (5.3–7.3 kPa) | Higher PaCO <sub>2</sub> tolerated in BPD, permissive hypercapnia |
| PaO <sub>2</sub>              | 50–80 mmHg (6.7–10.7 kPa) | 45–65 mmHg (6.0–8.7 kPa) | Avoid PaO <sub>2</sub> $>$ 80 mmHg to prevent ROP                 |
| HCO <sub>3</sub> <sup>-</sup> | 22–26 mEq/L               | 20–24 mEq/L              | Lower in preterms due to immature renal compensation              |
| Base Excess                   | -2 to +2 mmol/L           | -4 to +2 mmol/L          | More negative values may be tolerated early on                    |
| Lactate                       | <2.0 mmol/L               | <2.5 mmol/L              | Elevated in hypoxia or poor perfusion                             |

| Gestational Age                      | Days of Life | pH        | PaCO <sub>2</sub> (mmHg) | PaO <sub>2</sub> (mmHg) | HCO <sub>3</sub> <sup>-</sup> (mEq/L) | Base Excess (mmol/L) |
|--------------------------------------|--------------|-----------|--------------------------|-------------------------|---------------------------------------|----------------------|
| <b>Extremely Preterm(&lt;28 wks)</b> | Day 1–3      | 7.25–7.35 | 45–60                    | 40–60                   | 18–22                                 | -4 to 0              |
|                                      | Day 4–7      | 7.30–7.40 | 40–55                    | 45–65                   | 20–24                                 | -3 to +1             |
| <b>Very Preterm(28–32 wks)</b>       | Day 1–3      | 7.30–7.40 | 40–55                    | 45–65                   | 20–24                                 | -3 to +1             |
|                                      | Day 4–7      | 7.35–7.45 | 35–50                    | 50–70                   | 22–26                                 | -2 to +2             |
| <b>Moderate Preterm(32–36 wks)</b>   | Day 1–3      | 7.35–7.45 | 35–50                    | 50–70                   | 22–26                                 | -2 to +2             |
|                                      | Day 4–7      | 7.35–7.45 | 35–45                    | 55–75                   | 22–26                                 | -2 to +2             |
| <b>Term Neonate(≥37 wks)</b>         | Day 1–3      | 7.35–7.45 | 35–45                    | 60–80                   | 22–26                                 | -2 to +2             |
|                                      | Day 4–7      | 7.35–7.45 | 35–45                    | 65–85                   | 22–26                                 | -2 to +2             |



# ABG AND VENT CHANGES



# HOW TO EXTUBATE

**maximizing extubation success in  
ELBW/VLBW infants, anchored in Cochrane  
reviews and recent literature.**

## Optimize Before You Extubate

- **Caffeine:** Ensure therapeutic levels (20 mg/kg loading, 5–10 mg/kg/day maintenance). Reduces apnea & extubation failure.
- **Avoid SBTs:** Neonatal spontaneous breathing trials don't improve outcomes; may destabilize.
- **Readiness Bundle:** Stable vitals, improving lung disease, manageable secretions, acceptable gases/vent settings, no escalating apnea/bradycardia. → Risk factors: lower GA/BW, high O<sub>2</sub>/vent needs, acidosis.

## Choose the Right Post-Extubation Support

- NIPPV > CPAP:** Strongest evidence for reducing failure in very preterm infants. (Cochrane review)
- Start Immediately:** At extubation, with adequate PIP/PEEP or delta-P (PIP-PEEP)
- CPAP:** Acceptable fallback, but higher failure risk.
- HFNC:** Gentler interface, but not superior; reserve for step-down.
- Emerging Modes:** NI-HFV, NIV-NAVA show promise—use in expert

<https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013830.pub2/>

[Weaning from mechanical ventilation and assessment of extubation readiness – ScienceDirect](#)

[Nasal intermittent positive pressure ventilation \(NIPPV\) versus nasal continuous positive airway pressure \(NCPAP\) for preterm neonates after extubation - Lemyre, B - 2023 | Cochrane Library](#)

- **Extubation Readiness Criteria**
- **Stable ABG:** pH > 7.25, PaCO<sub>2</sub> < 60 mmHg, PaO<sub>2</sub> > 50 mmHg on FiO<sub>2</sub> ≤ 0.3–0.4
- **Ventilator Settings:** PIP ≤ 14–18 cmH<sub>2</sub>O, rate ≤ 40 bpm, MAP ≤ 8–10 cmH<sub>2</sub>O
- **Clinical Stability:** Minimal apnea/bradycardia, manageable secretions, good spontaneous effort
- **Caffeine:** Ensure therapeutic levels before extubation (standard: citrate 20 mg/kg loading, 5–10 mg/kg/day maintenance)
- **Avoid SBTs:** Spontaneous breathing trials are not routinely recommended in neonates

| Support Mode | Starting Settings                                       | Best Use Case                            | Evidence Summary                   |
|--------------|---------------------------------------------------------|------------------------------------------|------------------------------------|
| NSIMV        | PIP 16–20,<br>PEEP 5–6,<br>Rate 30–40,<br>Ti 0.4-0.5sec | ELBW/VLBW post-extubation                | ↓ Extubation failure vs CPAP       |
| CPAP         | 6–8 cmH <sub>2</sub> O                                  | Mild RDS, apnea, post-extubation support | ↓ BPD vs MV;<br>↑ failure vs NIPPV |



## Extubation Success Calculator

| Variable                                                                                           | Value                            |
|----------------------------------------------------------------------------------------------------|----------------------------------|
| Gestational Age                                                                                    | <input type="text"/> 23 to 33    |
| <i>GA is in completed weeks. For example GA of 26 0/7 or 26 6/7 weeks should be entered as 26.</i> |                                  |
| Extubation Day of Life                                                                             | <input type="text"/> 1 to 59     |
| Pre-extubation % Oxygen                                                                            | <input type="text"/> 21% to 100% |
| Highest Respiratory Severity Score* in First 6 Hours                                               | <input type="text"/> 1 to 21     |
| Weight at Extubation (g)                                                                           | <input type="text"/> 460 to 2300 |
| Pre-extubation pH                                                                                  | <input type="text"/> 7.1 to 7.6  |

**Probability of Successful Extubation**

0%

Calculate

Clear

# HOW TO EXTUBATE

maximizing extubation success  
in ELBW/VLBW infants,  
anchored in Cochrane reviews  
and recent literature.

- ✓ Deliver **precise peak inspiratory pressures (PIP)** and **PEEP**
- ✓ Allow for **synchronization** with the infant's spontaneous breathing (in NSIMV)
- ✓ Maintain **higher pressure capabilities** (often >15–20 cmH<sub>2</sub>O)
- ✓ Use **standard neonatal circuits and interfaces**

## Evidence Highlights

**Short binasal prongs** were used in 15 of the 19 trials in the 2023 Cochrane meta-analysis comparing NIPPV vs CPAP. **Ventilator-generated NIPPV** via short prongs showed the **strongest reduction in extubation failure** (RR 0.49, 95% CI 0.40–0.62). Synchronization may enhance outcomes, but data are still evolving.

## Extubation Bundle (Timing & Action)

Ensure **proper sizing** and secure fixation to avoid leaks. Use **humidification** to reduce mucosal injury. Monitor for **nasal trauma** and rotate interface if needed. For NIPPV/NSIMV: prioritize **ventilator-driven delivery** over bilevel devices when possible.

# USE OF RAM VS HUDSON

For **high-risk extubations** (ELBW/VLBW) where every  $\text{cmH}_2\text{O}$  counts, default to **short prongs or mask NSIMV**; consider RAM only if you can **verify delivered pressures** or if prongs/mask are not tolerated

- There is **no Cochrane verdict RAM vs Hudson**. Use Cochrane's interface guidance (mask vs prongs) plus trial/bench data when choosing between **RAM and Hudson**
- If your **primary goal is extubation success in ELBW/VLBW**, most centers still favor **occlusive short binasal prongs (Hudson-type) or a nasal mask** for better, more reliable pressure delivery—especially when you need higher MAP/ $\Delta\text{P}$ .

**RAM cannula can be reasonable when:**

- You **optimize the seal** (Nasal seal) and
- **Compensate pressures** (expect to set higher CPAP/NIV pressures to achieve equivalent pharyngeal pressures), and
- You're prioritizing **reduced nasal trauma** and easier nursing care.

# Troubleshooting

- Sudden Clinical Deterioration
- Common Signs
- Drop in oxygen saturation
- Hypotension
- Bradycardia
- Cyanosis
- Hypercapnia

## Mnemonic: DOPE

- Dislodgement
- Obstruction
- Pneumothorax
- Equipment failure

### Immediate Actions

- Check ventilator function and waveform display
- Inspect for disconnected tubing or hoses
- Rule out mechanical issues: displaced, kinked, or blocked ETT
- Assess chest expansion and air entry
- Perform quick ETT suction
- Consider direct laryngoscopy to confirm ETT position
- Exclude pneumothorax via auscultation or transillumination
- Emergency aspiration if tension pneumothorax suspected
- Reintubate if tube is blocked or dislodged

## Gradual Clinical Deterioration

### Typical Trends

- Slow fall in PaO<sub>2</sub>
- Gradual rise in PaCO<sub>2</sub>

### Initial Checks

- Rule out displaced/blocked ETT or air leak
- Confirm ventilator settings are appropriate

# Troubleshooting

### Possible Causes

Inadequate ventilator settings ( $\uparrow$  PIP, rate, FiO<sub>2</sub> may be needed)

Baby fighting ventilator (exclude obstruction before sedation)

Intraventricular hemorrhage (look for pallor, bulging fontanel, seizures, acidosis)

Patent ductus arteriosus

Infection (nosocomial): pallor, poor perfusion, test appropriately

Fluid overload: edema, excessive weight gain

Hypotension: check BP, review fluids, consider NS bolus

Anemia: often iatrogenic (e.g., frequent blood sampling)

Metabolic imbalance: check urea, creatinine, electrolytes

Poor environmental support: avoid excessive handling, maintain thermo-neutrality

# Understanding pulmonary mechanics



# PULMONARY MECHANICS

SLE 5000

SLE 6000

Measured values  
are now separated  
from set values and  
change/rearrange  
in position



|            |       |
|------------|-------|
| RR Meas    | 0.33  |
| Trigger    | 26    |
| BPM Set    | 23    |
| Vtme (ml)  | 7.0   |
| Vmean (ml) | 0.139 |
| Leak (%)   | 10    |
| Pmean      | 10.9  |
| CO2out     | 1.1   |
| CO2in      | 0.8   |
| Mean P     | 1     |

|              |      |      |
|--------------|------|------|
| RR (BPM)     | 31   | 21   |
| Vt (ml)      | 0.35 | 19.4 |
| PEEP (mlbar) | 17   | 3.4  |
| MAP (mlbar)  | 6.0  |      |
| Vmean (ml)   | 0.29 | 10.5 |
| Leak (%)     | 1.1  | 12   |
| CO2out       | 98   |      |
| CO2in        | 0.7  |      |

# SLE 5000 Trigger sensitivity



TI Meas. 0.33  
Trigger 26  
BPM Tot 23  
Vtde (ml) 7.0  
MinVol (l) 0.139  
Leak (%) 10  
Persist. 109  
Compt. 1.1  
C20C 0.8  
Mean P.

# BPM measurement

- The Ventilator Measures BPM In 2 Different ways with or without flow sensors
- With flow sensor : all breaths are counted: triggered spontaneous and mandatory
- Without flow sensor: only triggered and mandatory breaths are counted by the pressure sensor inside the machine. –Pressure triggering

| SLE 5000 |       | SLE 6000  |             |
|----------|-------|-----------|-------------|
| TI Meas. | 0.33  | 31        | 21          |
| Trigger  | 26    | RR (BPM)  | CO (%)      |
| BPM Tot  | 23    | 0.35      | 19.4        |
| Vte (ml) | 7.0   | Ti (s)    | PIP (mbar)  |
| Vmin (l) | 0.139 | 17        | 3.4         |
| Leak (%) | 10    | Trig      | PEEP (mbar) |
| Resist.  | 109   | 0.29      | 6.0         |
| Compl.   | 1.1   | Vmin (l)  | Vte (ml)    |
| csc      | 0.8   | 1.1       | 12          |
| Mean P   | 1     | csc       | Leak (%)    |
|          |       | 98        |             |
|          |       | 0.7       |             |
|          |       | (ml/mbar) | (ml/mbar)   |

# Vti vs VTe



# Measured Minute Volume Vmin (L)

Minute Volume in healthy neo

- FT newborn 0.2-0.4L/min/kg
- Preterm 0.2-0.3L/min/kg
- Useful for guessing over or under ventilation before blood gas is done.
- Alarm limits set 10-20% above and below the limit of ranges above

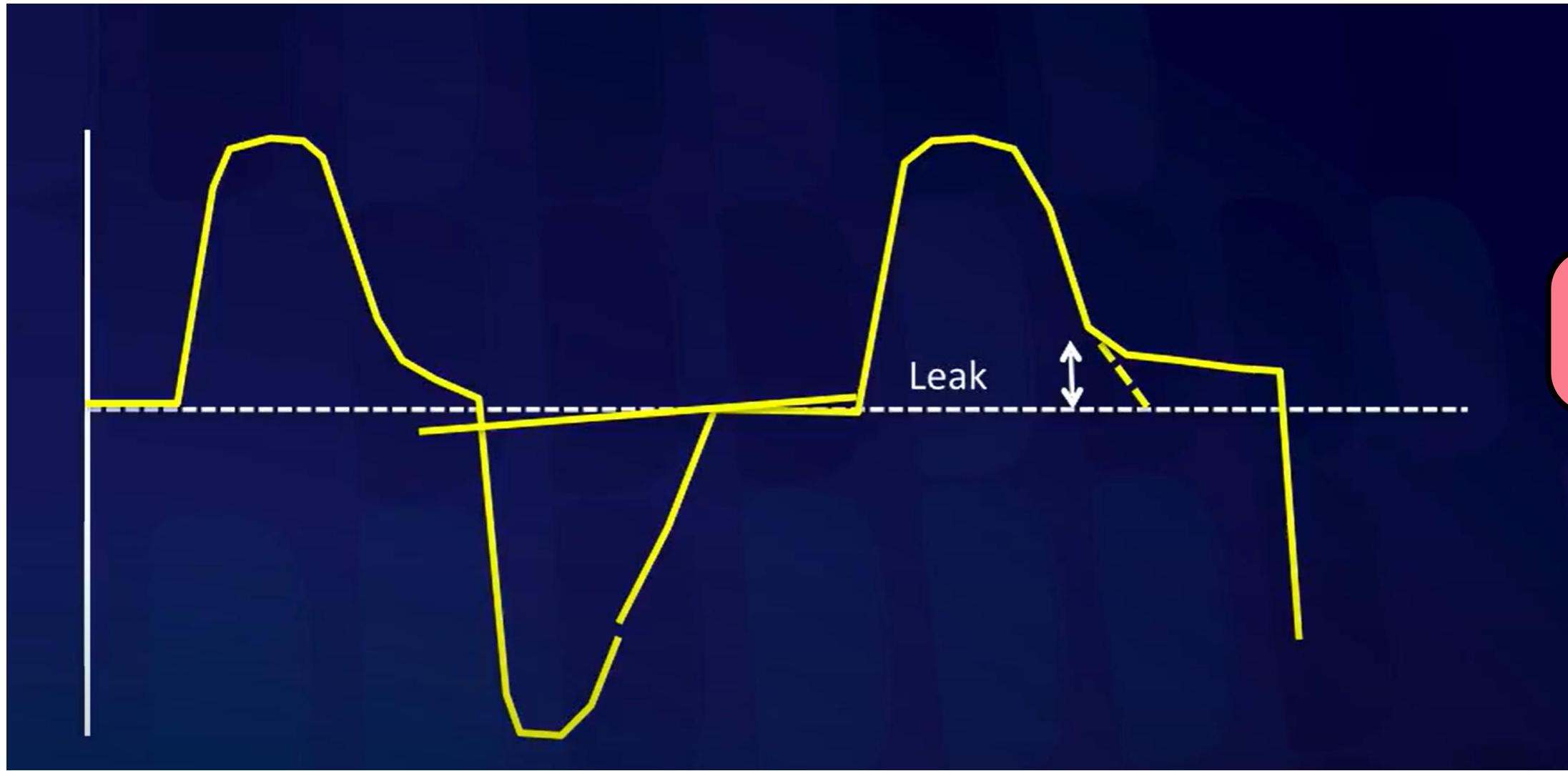
SLE 5000

|          |       |
|----------|-------|
| Ti Meas. | 0.33  |
| Trigger  | 26    |
| BPM Tot  | 23    |
| Vte (ml) | 7.0   |
| Vmin (l) | 0.139 |
| Leak (%) | 10    |
| Resist.  | 109   |
| Compl.   | 1.1   |
| C2HC     | 0.8   |
| Mean P   | 1     |

SLE 6000

|          |              |
|----------|--------------|
| 31       | 21           |
| RR (BPM) | O2 (%)       |
| 0.35     | 19.4         |
| Ti (s)   | PIP(mbar)    |
| 17       | 3.4          |
| Trig     | PEEP(mbar)   |
| 6.0      | MAP(mbar)    |
| 0.29     | 10.5         |
| Vmin (l) | Vte (ml)     |
| 1.1      | 12           |
| C2HC     | Leak (%)     |
| 98       | V (ml/sec/l) |
| 0.7      | End. Insuff. |

# Leakage


- Refers to the discrepancy between the volume of gas entering the lungs and the volume leaving the lungs during single breath due to **gas escaping around the uncuffed ETT**.
- Leakage >50%
- Expected alarms
- Breath not detected

SLE 5000

|          |       |
|----------|-------|
| Ti Meas. | 0.33  |
| Trigger  | 26    |
| BPM Tot  | 23    |
| -----    |       |
| Vte (ml) | 7.0   |
| Vmin (l) | 0.139 |
| Leak (%) | 10    |
| Resist.  | 109   |
| Compl.   | 1.1   |
| C20C     | 0.8   |
| -----    |       |
| Mean P   | 1     |

SLE 6000

|          |             |
|----------|-------------|
| 31       | 21          |
| RR (BPM) | O2 (%)      |
| 0.35     | 19.4        |
| Ti (s)   | PP(mbar)    |
| 17       | 3.4         |
| Trig     | PEEP(mbar)  |
| 6.0      | MAP(mbar)   |
| 0.29     | 10.5        |
| Vmin (l) | Vte (ml)    |
| 1.1      | 12          |
| C20C     | Leak (%)    |
| 98       | 2 (mbar/lN) |
| 0.7      |             |



### Why Leaks Interfere with Time Constant Assessment

#### 1. Volume Loss

- Leaks cause **delivered volume to escape** before reaching the lungs.
- The ventilator measures volume based on what it sends—not what the lungs actually receive.
- This makes **compliance (C\_RS)** appear falsely low or variable.

#### 2. Flow Distortion

- Leaks alter the **shape and slope of flow waveforms**, especially during expiration.
- This affects the calculation of **resistance (R\_RS)** and the timing of volume change.

#### 3. Invalid $\tau$ Calculation

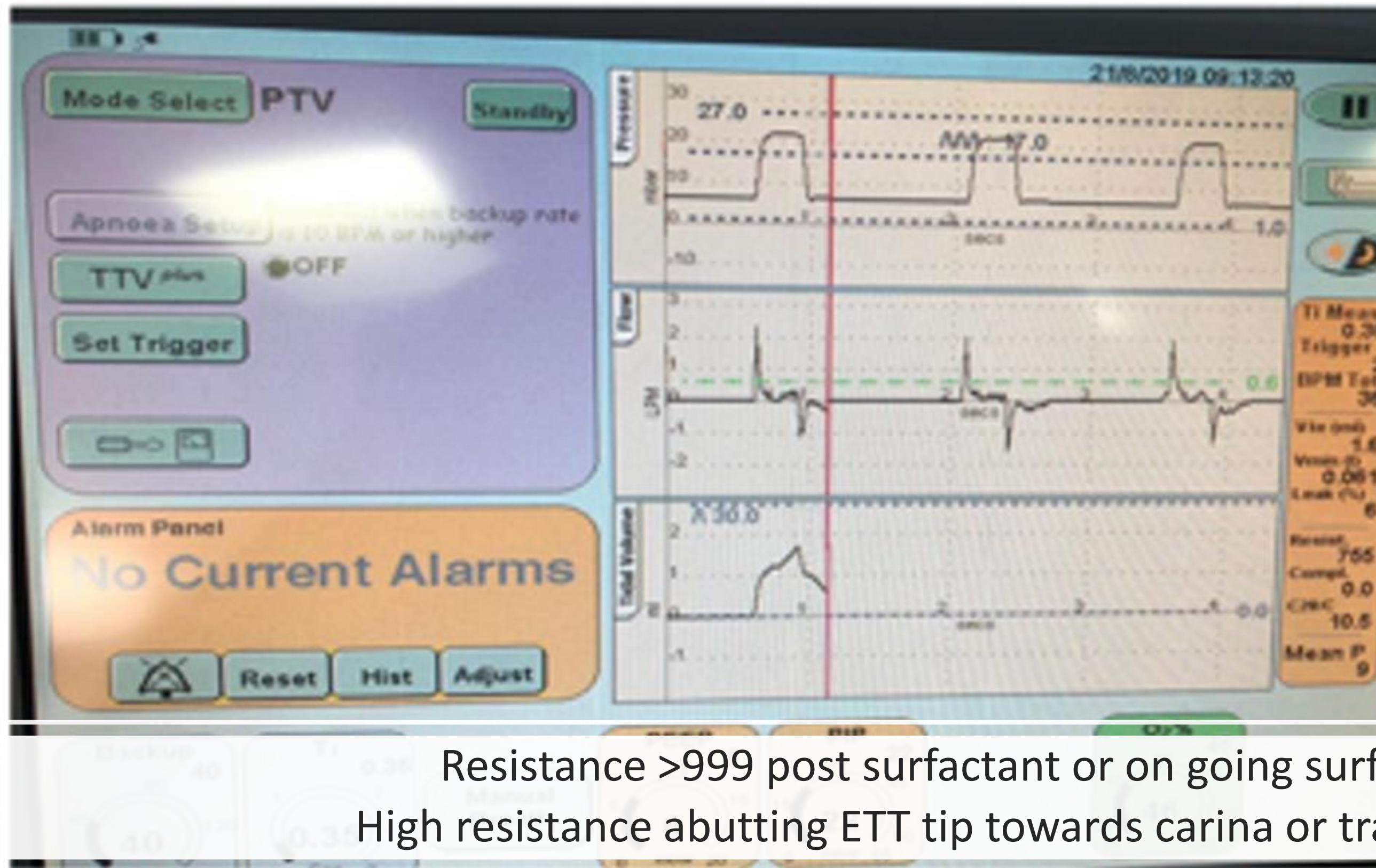
- Since  $\tau = CRS \times RRS / \tau = C_{RS} \times R_{RS}$ , both inputs are corrupted by the leak.
- The resulting  $\tau$  is **not physiologically meaningful**—it reflects circuit error, not lung mechanics.

“The only true solution in the presence of a larger leak is to assess chest wall movement.”

# Parameters that will be affected when leakage is HIGH >30%



## Measured Values :Resistance (mbar/l/sec)

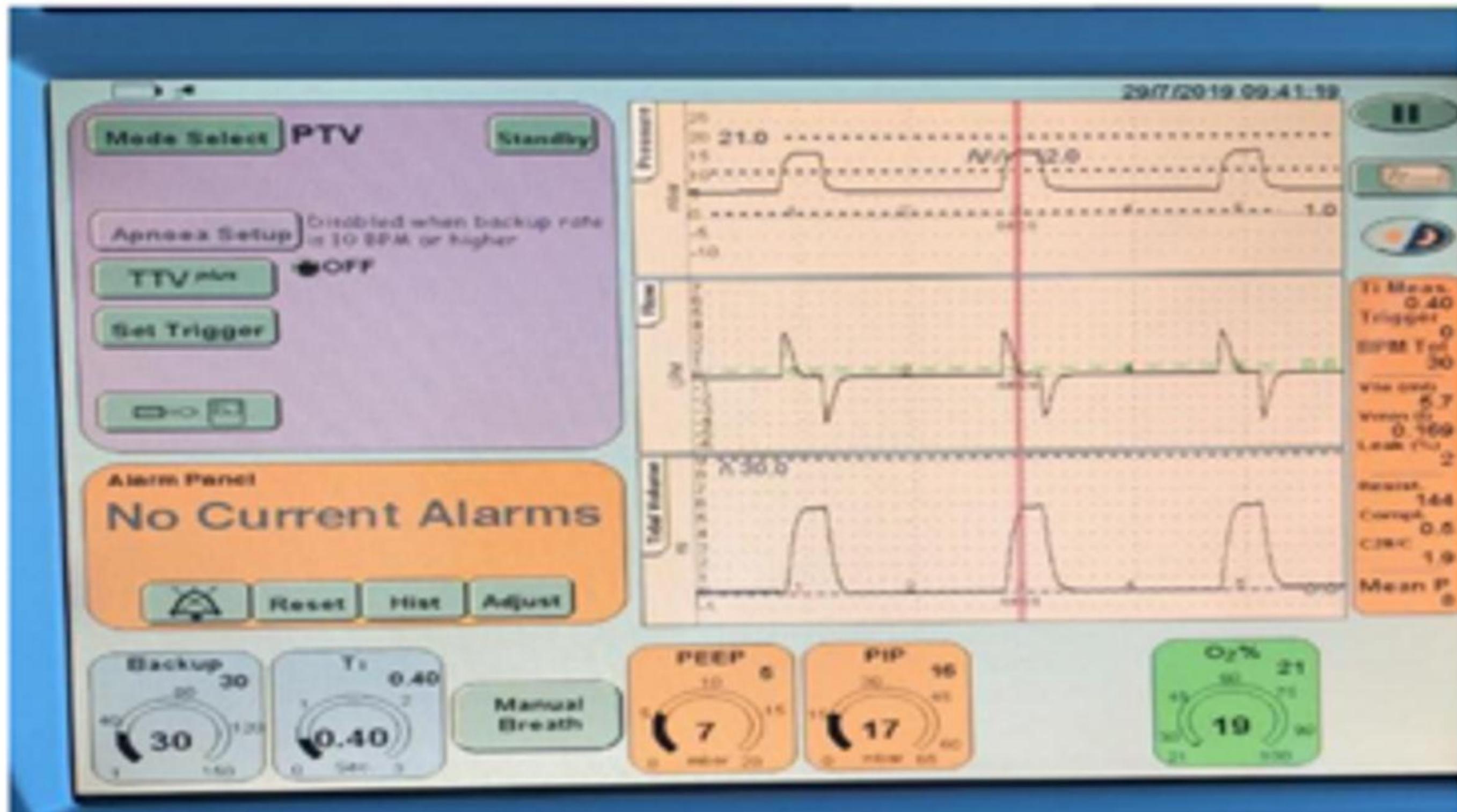

- Acceptable :
- ETT 2.5 130 to 200
- ETT 3-3.5 50-100
- Very high values (more than 300) can be accepted but should never be neglected

### Common reasons

- Kinked or partially blocked ETT
- ETT impinging on carina
- Recent surfactant administration
- Thick secretion
- Severe BPD or MAS
- Very high PIP and rate together in 2.5 ETT (high Turbulence)

| SLE 5000 |       | SLE 6000   |            |
|----------|-------|------------|------------|
| Ti Meas. | 0.33  | 31         | 21         |
| Trigger  | 26    | RR (BPM)   | O2 (%)     |
| BPM Tot  | 23    | 0.35       | 19.4       |
| Vte (ml) | 7.0   | Ti (s)     | PIP(mbar)  |
| Vmin (l) | 0.139 | 17         | 3.4        |
| Leak (%) | 10    | Tig        | PEEP(mbar) |
| Resist.  | 109   | 6.0        | MAP(mbar)  |
| Compl.   | 1.1   | 0.29       | 10.5       |
| C28:C    | 0.8   | Vmin (l)   | Vte (ml)   |
| Mean P   | 1     | 1.1        | 12         |
|          |       | C28:C      | Leak (%)   |
|          |       | 98         |            |
|          |       | I (ml/sec) |            |
|          |       | 0.7        |            |
|          |       | (ml/Min)   |            |

## High Resistance




2 hrs post surfactant administration

Resistance >999 post surfactant or on going surfactant

High resistance abutting ETT tip towards carina or tracheal wall

# Low Resistance



4 hr post surfactant

- **Smaller tubes = more resistance**
- Tiny ETTs make it harder for air to flow in and out.
- **High flow = higher resistance**
- Fast breathing or crying increases effort.
- **What this means:**
  - Baby may need to work harder to breathe
  - Can lead to CO<sub>2</sub> buildup and breathing fatigue
- **Tube length has minor effect**
- Shorter tubes help slightly, but don't make a big difference overall.

## Resistance



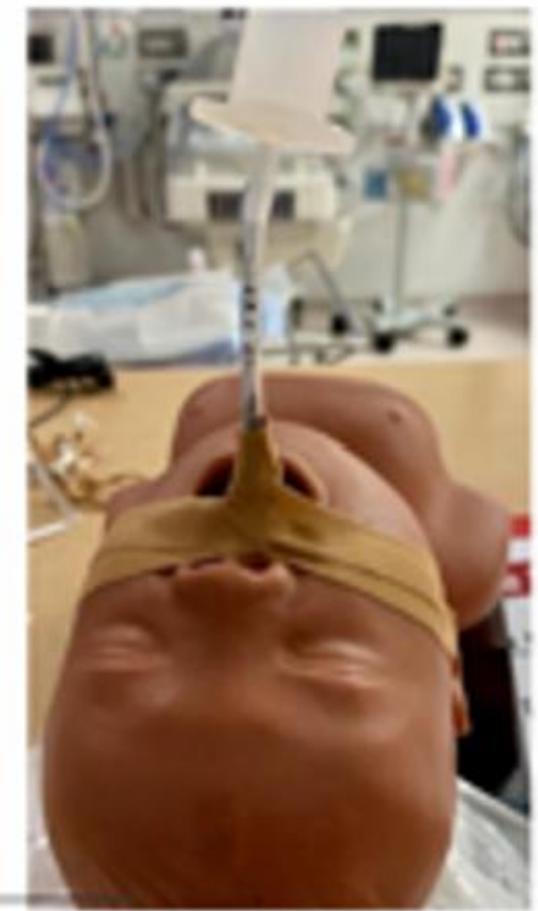
- Airway diameter
- Airway length
- Viscosity of gas

### Management Strategies:

- **Suctioning** to clear secretions
- **Positioning** to optimize airway patency
- **Humidified oxygen or CPAP** to stent open airways
- Treat underlying causes (e.g., bronchiolitis, MAS, BPD)

# ETT cut By 2CM from Full length

## By 2CM from Full length


Can be done early if patient is using MAC Multi access catheter for surfactant administration or later after 72hrs post surfactant as preferred

| Size    | length | Cut by (-2CM) |
|---------|--------|---------------|
| ETT 2.5 | 15>    | 13cm          |
| ETT 3.0 | 17>    | 15cm          |
| ETT 3.5 | 19>    | 17CM          |





Changing my neck position will solve the problem High Resistance



# Lung Compliance

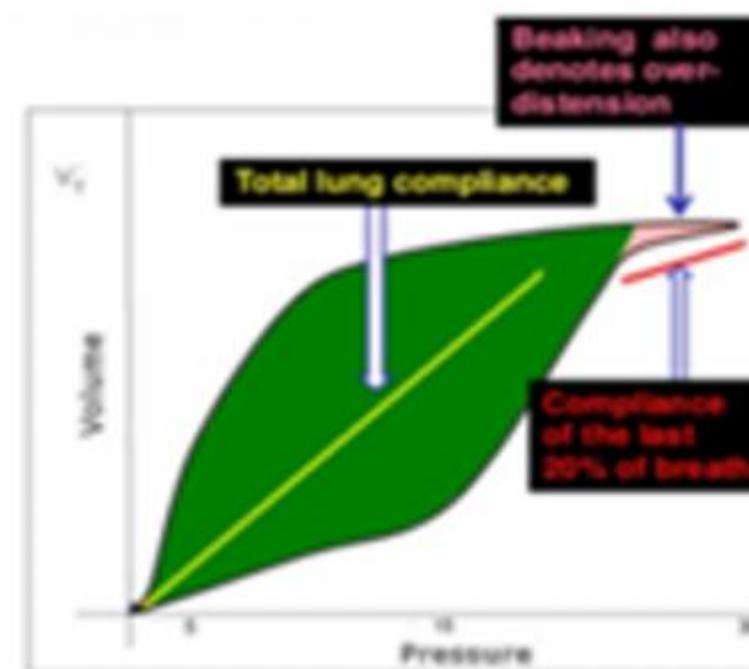
## Compliance (ml/mbar)

- Acceptable values:
- Normal Full term not on ventilator 2-2.5ml/mbar
- Good for extubation >1 ml/mbar
- Expected in Preterm/RDS phase 0.1-1ml/mbar

| SLE 5000  |       | SLE 6000  |           |
|-----------|-------|-----------|-----------|
| Ti Meas.  | 0.33  | 31        | 21        |
| Trigger   | 26    | RR (BPM)  | O2 (%)    |
| BPM Tot   | 23    | 0.35      | 19.4      |
| Vte (ml)  | 7.0   | Ti (s)    | PIP (ml)  |
| Vmean (l) | 0.139 | 17        | 3.4       |
| Leak (%)  | 10    | Trig      | PEEP (ml) |
| Resist.   | 109   | 0.29      | 6.0       |
| Compl.    | 1.1   | Vmean (l) | MAP (ml)  |
| C2cC      | 0.8   | 1.1       | 12        |
| Mean P    | 1     | C2cC      | Leak (%)  |
|           |       | 98        |           |
|           |       | 0.7       |           |

# MAP cmh20

- Mean Airway Pressure-
- Average Pressures that you have in the settings over a time
  - TI, PIP, PEEP, RR
- Most Influential is PEEP


|          |       |
|----------|-------|
| Ti Meas. | 0.33  |
| Trigger  | 26    |
| BPM Tot  | 23    |
|          |       |
| Vte (ml) | 7.0   |
| Vmin (l) | 0.139 |
| Leak (%) | 10    |
|          |       |
| Resist.  | 109   |
| Compt.   | 1.1   |
| C20/C    | 0.8   |
|          |       |
| Mean P   | 1     |

|              |              |
|--------------|--------------|
| 31           | 21           |
| RR (BPM)     | O2 (%)       |
| 0.35         | 19.4         |
| Ti (s)       | PIP (mbar)   |
| 17           | 3.4          |
| Trig         | PEEP (mbar)  |
|              |              |
| 6.0          | MAP (mbar)   |
|              |              |
| 0.29         | 10.5         |
| Vmin (l)     | Vte (ml)     |
| 1.1          | 12           |
| C20/C        | Leak (%)     |
| 98           |              |
|              |              |
| 0.7          |              |
| (ml, l mbar) | (mL, l mbar) |

$$\text{Paw} = (\text{inspiratory Time} \times \text{Frequency}) / 60 \times (\text{PIP} - \text{PEEP}) + \text{PEEP}$$

## C20/C ratio for over distension

- Ratio of compliance during the last 20% of breath cycle to the total compliance.
- If this calculated value is less than 0.8, the lungs are overinflated therefore PIP should be reduced.



|          |       |
|----------|-------|
| Ti Meas. | 0.33  |
| Trigger  | 26    |
| BPM Tot  | 23    |
| -----    | ----- |
| Vte (ml) | 7.0   |
| Vmin (l) | 0.139 |
| Leak (%) | 10    |
| -----    | ----- |
| Resist.  | 109   |
| Compl.   | 1.1   |
| C20/C    | 0.8   |
| Mean P   | 1     |

|              |            |
|--------------|------------|
| 31           | 21         |
| RR (BPM)     | O2 (%)     |
| 0.35         | 19.4       |
| Ti (s)       | PIP(mbar)  |
| 17           | 3.4        |
| Trig         | PEEP(mbar) |
| 6.0          | MAP(mbar)  |
| 0.29         | 10.5       |
| Vmin (l)     | Vte (ml)   |
| 1.1          | 12         |
| C20/C        | Leak (%)   |
| 98           |            |
| I (mbar/l/s) |            |
| 0.7          | (ml/Umbar) |

# DCO<sub>2</sub>

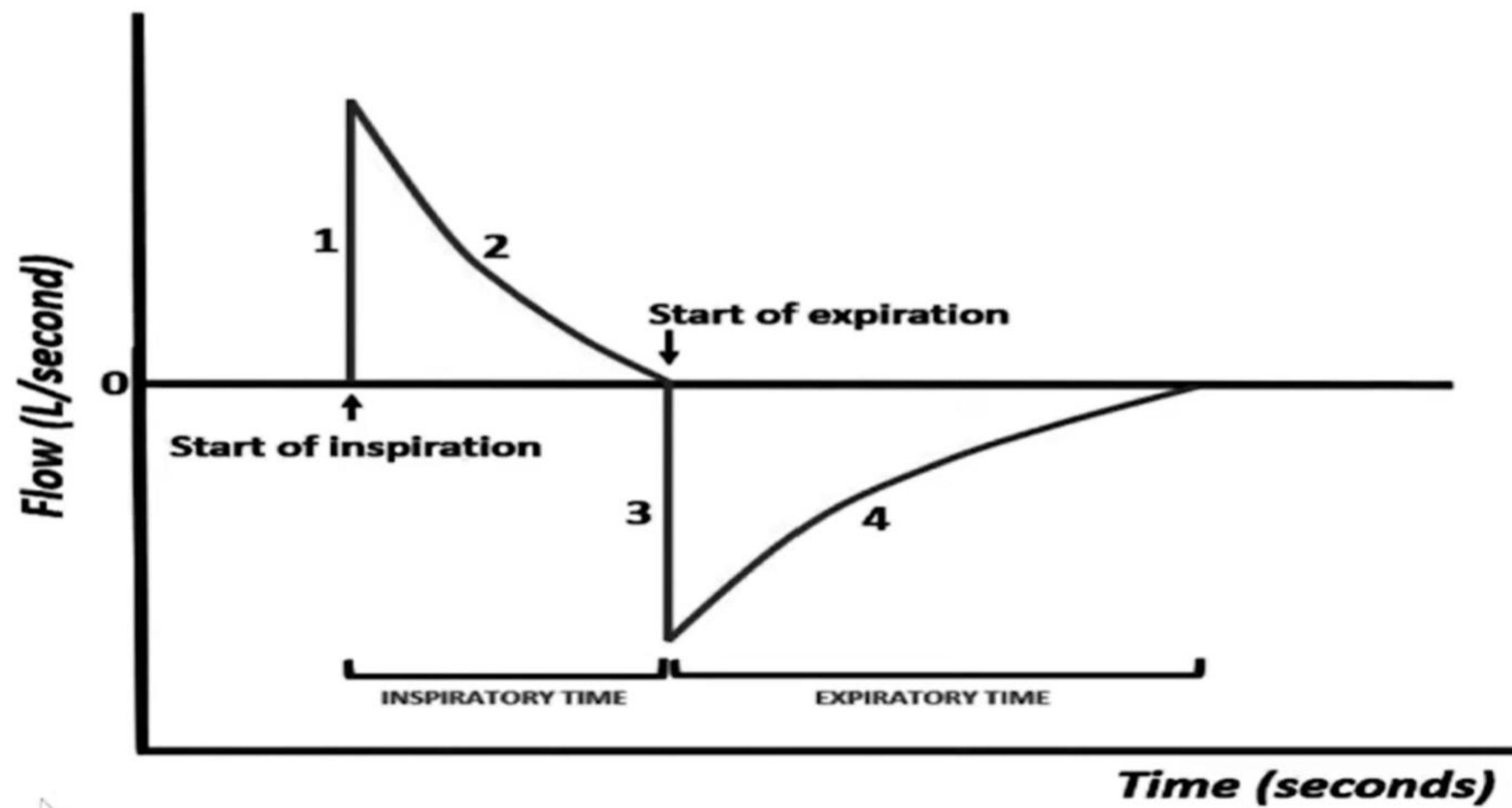
Is a relatively new value and can be a marker of alveolar hypoventilation.  
DCO<sub>2</sub> is dependent on the size of the baby (rough target is 40-80 ml<sup>2</sup>/sec for a 1000g baby)

Value is calculated by VN 500 as

$$\text{DCO}_2 \text{ (ml}^2/\text{sec) = } \text{VThf}^2 \times \text{Fhf}$$

Documenting the DCO<sub>2</sub> hourly and maintaining this at a stable level can be helpful during ventilation

\*Decrease dco<sub>2</sub> by 10% means increase in CO<sub>2</sub>


Increasing DCO<sub>2</sub> trending means a good elimination of CO<sub>2</sub>

INITIAL DCO<sub>2</sub> FOR DIFFERENT PATIENT WEIGHTS

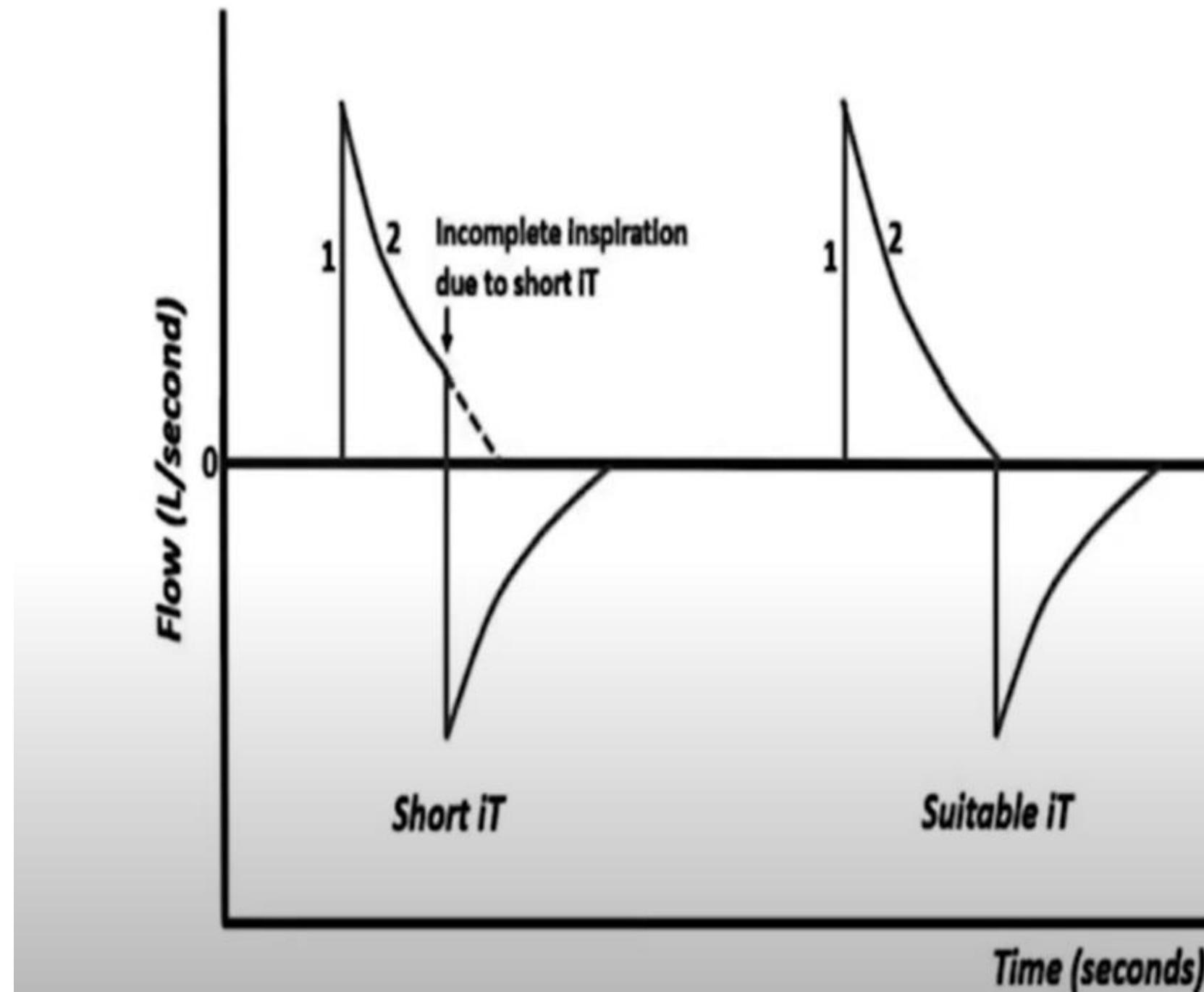
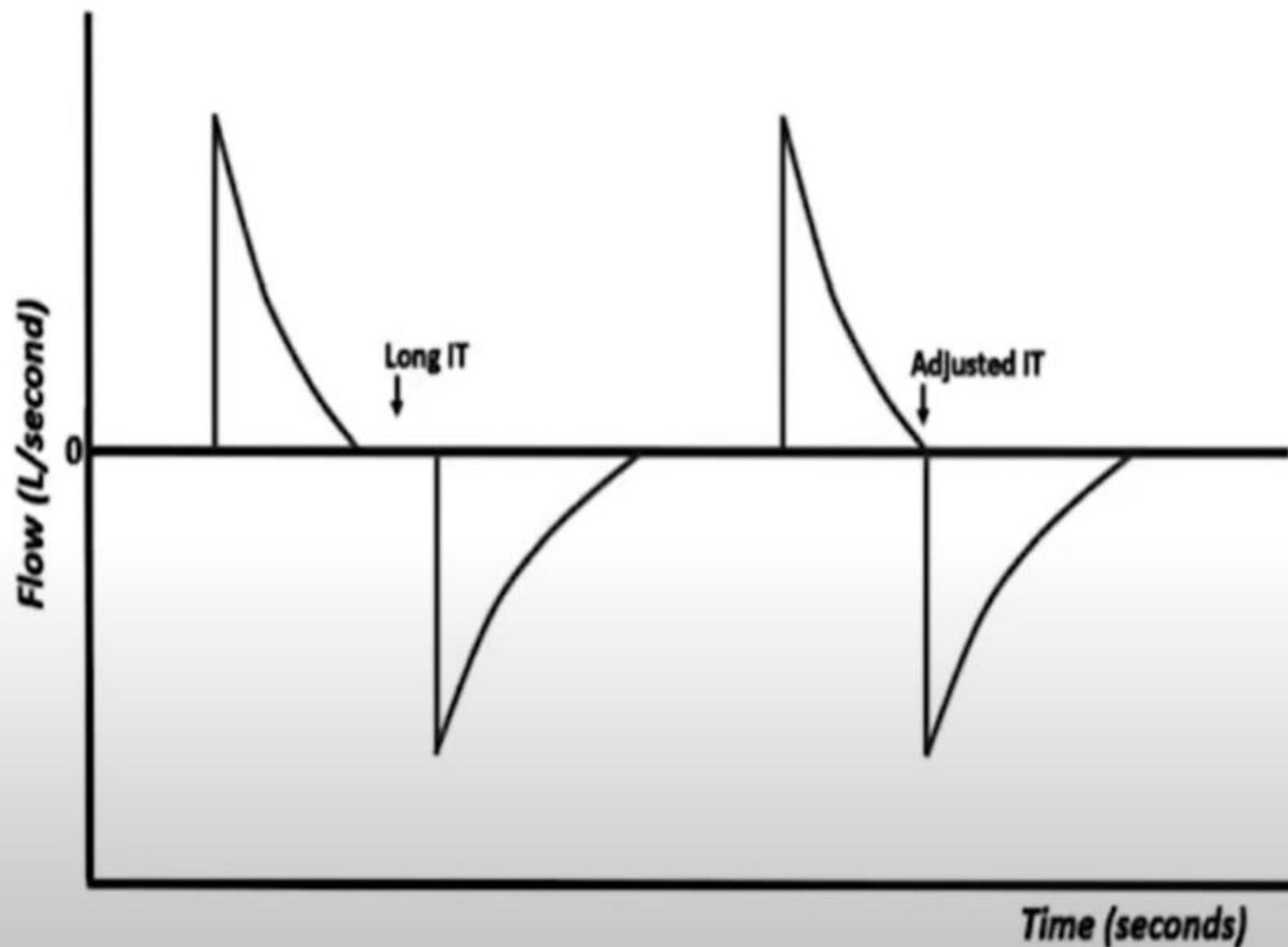

| Weight (kg) | 5 Hz<br>3.46 mL/kg | 7 Hz<br>2.93 mL/kg | 10 Hz<br>2.45 mL/kg | 15 Hz<br>2.00 mL/kg |
|-------------|--------------------|--------------------|---------------------|---------------------|
| 0.5         | 15                 | 15                 | 15                  | 15                  |
| 1           | 60                 | 60                 | 60                  | 60                  |
| 2           | 240                | 240                | 240                 | 240                 |
| 3           | 540                | 540                | 540                 | 540                 |
| 4           | 960                | 960                | 960                 | 960                 |

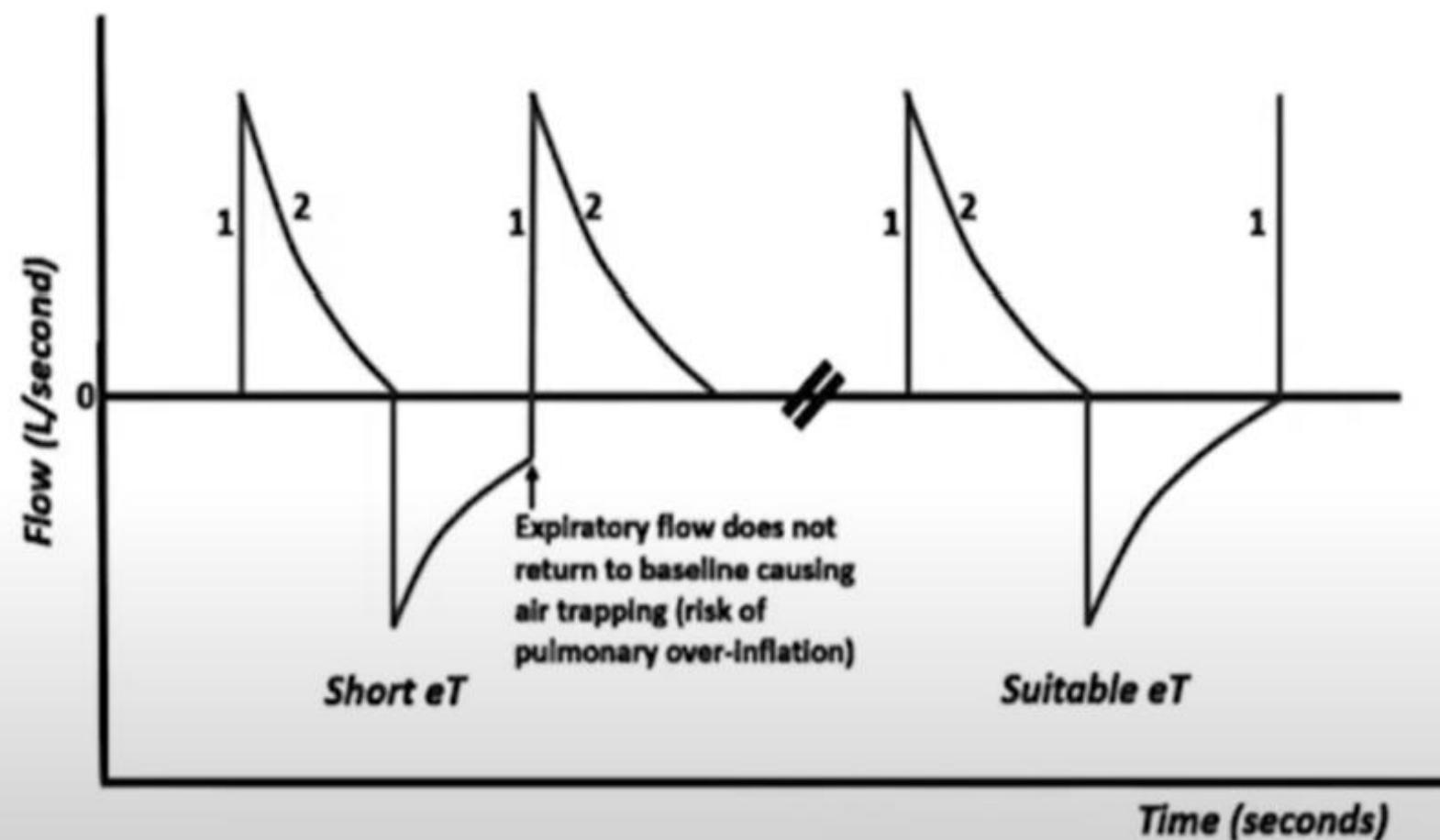
Table 1: Different combinations of frequency and tidal volume to reach same DCO<sub>2</sub> for permissive hypercapnia.

# Normal Flow - Time scalar



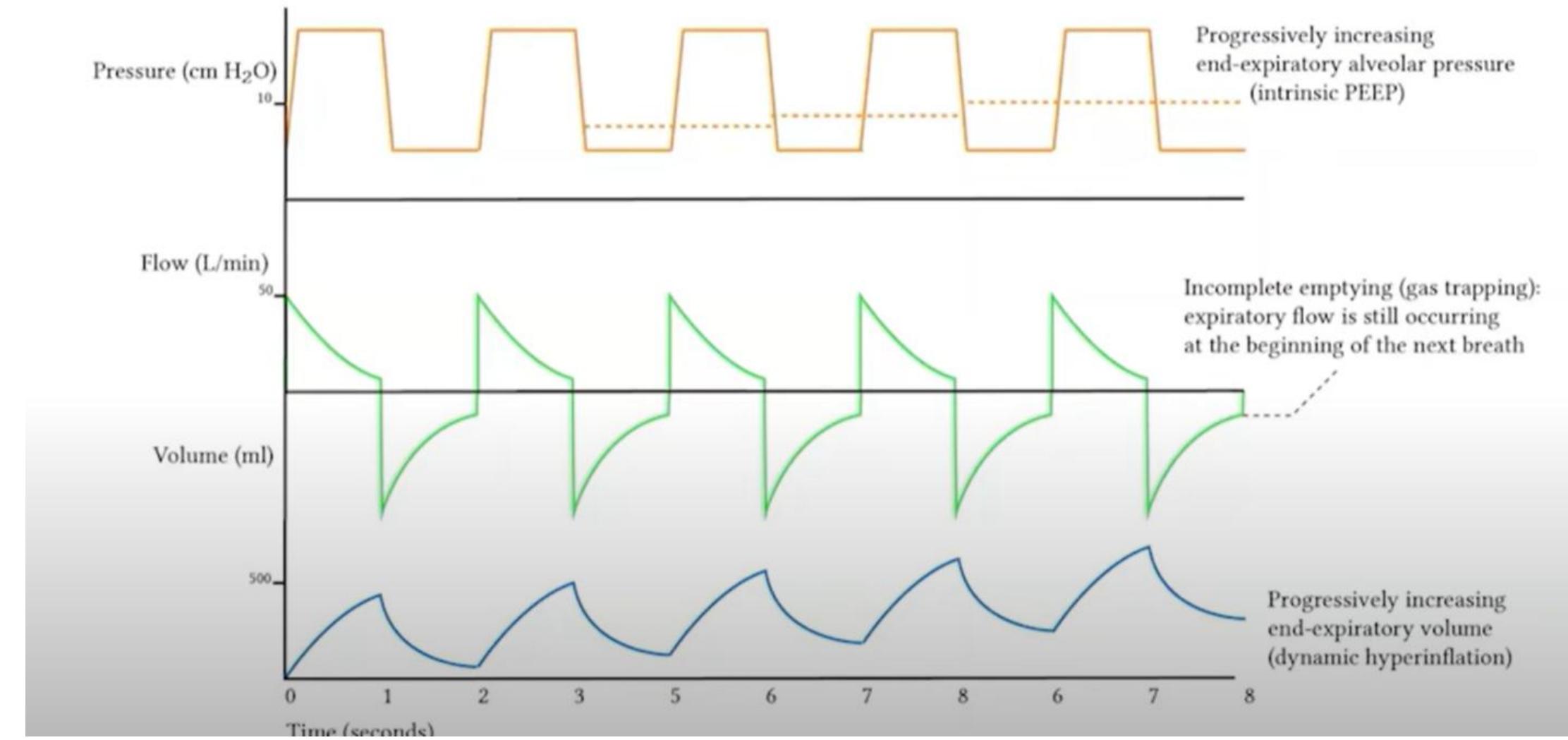

# When $T_i$ Set too Short



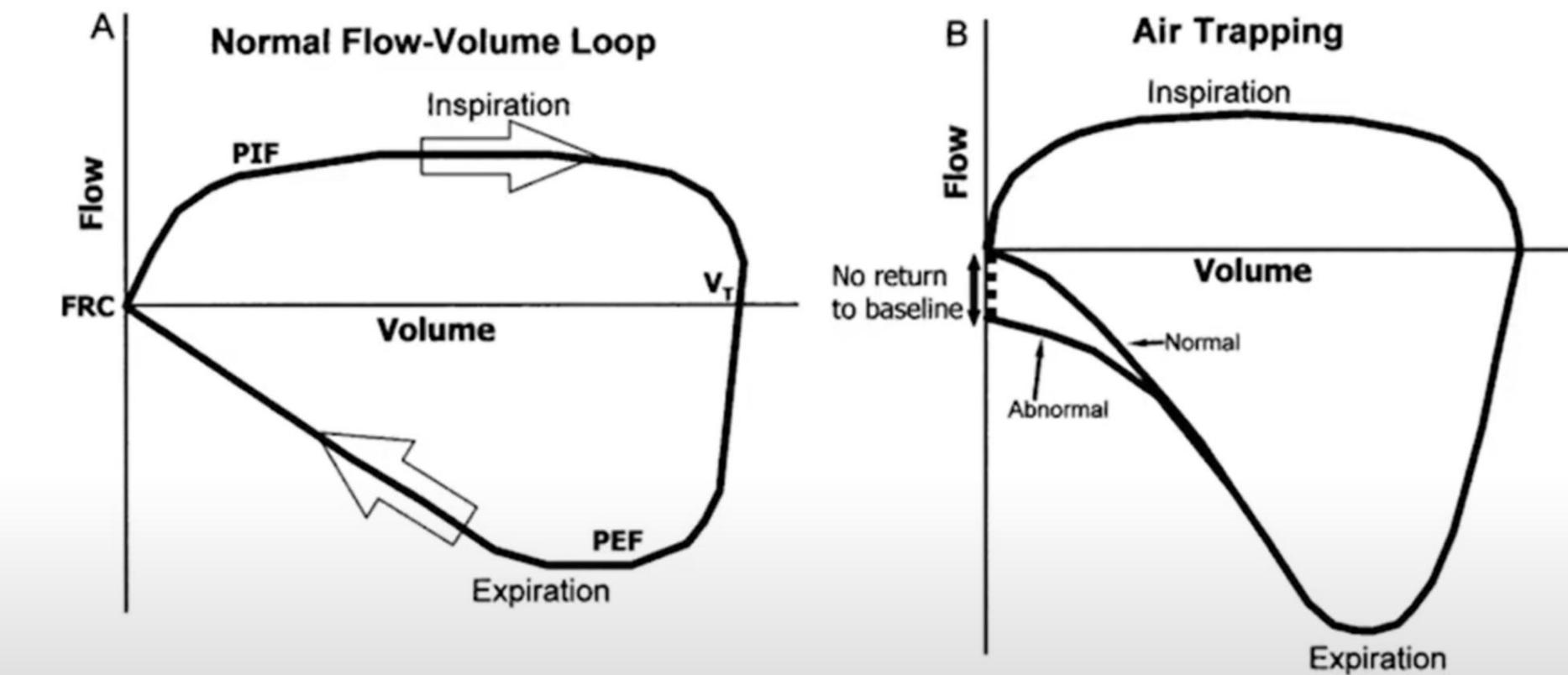

- When  $T_i$  is too short, the air flow is not completely delivered to the lungs.
- In this case, increasing the inspiratory time allows for complete inspiration.

# When $T_i$ set too long




- When the  $T_i$  is too long , there is timing in the ventilatory cycle that is not used and that may be necessary to complete the expiration time, especially when using high ventilation frequencies.
- In this case, it is enough to decrease the  $T_i$ , so that the expiration starts immediately after the end of the inspiration.

# Airtrapping or Auto PEEP




- When the expiratory time ( $T_e$ ) is too short, the air flow is not completely expelled from the lungs , resulting in air trapping (auto-Peep) with risk of pulmonary over-inflation.
- In this case, increasing the  $T_e$  will allow the air flow to completely exit.

# Ventialtor Waveforms showing Auto PEEP and its effects



# Flow-Volume Loop showing air trapping



Flow - time scalar and flow volume loop are the best ones to look for air trapping in ventilator waveforms.